FOREWORD

Right since its inception in late 1960s, the Indian Space Research Organization has strived to and has largely met the vision of its founding father, Dr Vikram Sarabhai, of ensuring the reach of applications of advanced technologies to the real problems of common man and society. As the space program grew, it was widely felt that there exist numerous opportunities to make use of the technologies developed from the endeavours of ISRO scientists and engineers for developing products which have wider market potential. It was the vision of Prof Satish Dhawan, who as early as 1975, opened the avenues of technology transfer in ISRO by creation of a formal group for the same.

Over the years, the program, operating through ISRO headquarters, has worked in close coordination with all major ISRO centers to create a sustainable and vibrant technology transfer ecosystem, wherein technical know-how is transferred to competent industries. With increase in ISRO programs over the years, the organization has ensured buybacks from these industries for relevant items, thus helping them in sustenance. Further, the policy being non-exclusive in nature, the ISRO technology transfer mechanism is open for all players – public sector units as well as private players.

Now, Capacity Building Program Office, which coordinates technology transfer across ISRO centers, has brought forth this compilation, highlighting the major technology offers available from ISRO. The core idea behind this compilation is to take a stock of what we have achieved and gear up for further advancement in this area. I hope the compilation gives a glimpse of offers from ISRO and further stokes up the curiosity of industries to acquire technology from the organization to develop spin-offs and buyback products.

(K Sivan)
INTRODUCTION

The domain of space is quite exclusive in nature, with space systems having less in common with other technologies. Further, a few systems are required to be developed from scratch, as they are not available for direct acquisition. It is a constant endeavor of the organization to develop such technologies in the areas of materials, chemicals, fabrication, electronics, avionics, satellite applications, etc. to be self-reliant in space segment.

Some of these critical technologies do have spin-offs in other areas, including societal applications. In order to keep the country technically competent, ISRO adopted a philosophy to transfer some of the technologies to industries either to productionise the subsystems of ISRO missions or to develop components/systems for non-space domain. Thus was born a working group on technology transfer in 1975, which evolved into the Technology Transfer Group, that today falls under the ambit of Capacity Building Program Office.

The mechanism for technology transfer in ISRO is formalized through a technology transfer agreement with the industry, with validity and a nominal licensing fee. The compilation presented herewith catalogues the technology offers available from ISRO. The document is not a culmination, rather is to be seen as a stepping stone, to further enhance and give impetus to the technology transfer activities of ISRO in coming years. I hope the compilation succeeds in its purpose of being informative as well as one providing opportunities to the reader.

(PV Venkitakrishnan)
ISRO has transferred over 400 technologies to around 235 industries. Starting in 80s, the technology transfer program has gone from strength-to-strength, with industries engaged across various sectors and geographically covering the breadth of the nation. Broadly speaking, ISRO technology transfers can be categorized into:

- **TT with the intent of buy-back:** These generally include products finding application in ISRO programs. These technologies are transferred with an intent of developing a strong vendor base, so that multiple sources are available for a product. Examples include HTPB binder, UDMH, MMH, ISROSIL, 1.5 AH sealed Ag-Zn cells, Space grade Li-ion cells, etc.

- **TT with the intent of development of Space Systems utilization and Space Applications:** These products would find end-use serving organizations utilizing the space applications, such as MoES, DoT, IMD, Strategic Sectors, etc. Examples include S-band DRS, satellite telecom/TV/Met ground systems, remote sensing utilization, NavIC applications, etc.

- **TT with the intent of “non-space” applications i.e Spin-Offs:** These products would mainly find industrial applications, societal benefits, academic utilization, etc. Examples include Li-ion cells for automotive sector, adhesives, pressure and temperature sensors etc.
INDUSTRIES ENGAGED STATE-WISE DISTRIBUTION

Jammu & Kashmir-1
Punjab & Haryana-2
Rajasthan-4
Madhya Pradesh-1
Gujarat-31
Maharastra-37
Karnataka-29
Kerala-28
Himachal Pradesh-2
Utter Pradesh & Delhi NCR-20
West Bengal -7
Orissa-2
Andhra Pradesh & Telangana -46
Tamilnadu-25
Content

1. **Antennas**
 1.1. C/Ku Ortho Mode Transducer for combined C/Ku Receive Feed Systems
 1.2. Dual feed Square Patch antenna for Reporting Terminal
 1.3. Dual feed Square Patch antenna for Broadcast receiver
 1.4. Multilayer Printed Antenna Technology
 1.5. Design of Ku/C/I and S Band Cassegrain Feed
 1.6. Patch Array Antenna for Portable Multimedia Terminal
 1.7. X band Wide scan Active Phased Array Antenna
 1.8. Rapidly Deployable Multi-band VSAT Terminal for Disaster Management

2. **Communication & Navigation**
 2.1. Distress Alert Transmitter (DAT-SG)
 2.2. Personnel Tracker
 2.3. Two Way Mss Terminal for Vessel Tracking
 2.4. Mobile Satellite Services Terminal – Broadcast Receiver
 2.5. Mobile Satellite Services Terminal – Portable multimedia terminal
 2.6. Mobile Satellite Services Terminal – Reporting Terminal
 2.7. Mobile Satellite Services Terminal – Satellite Mobile Radio
 2.8. Two-Channel Digital Monopulse Tracking Receiver for Earth Station
 2.9. Navic Messaging and Positioning Receiver
 2.10. Radiosonde
 2.11. Satellite Gateway Unit (SGU)
 2.12. Low Cost Multi Standard Satellite Receiver (Data DTH) Technology
 2.13. Pseudolite Based Navigation System
 2.14. Ferrite based Wave guide Circulators and Isolators
 2.15. High Power Circulator-Switch Assembly

3. **RF & Electronics**
 3.1. SCPC Modem Ip Core
 3.2. V Band Low Noise Amplifier
 3.3. 21 NA Pressure Transducer
 3.4. Differential Pressure Transducer (DPT)
 3.5. HLP-85 Temperature Sensor
3.6. IDLV Pressure Transducer 45
3.7. MEMS based Pressure Transducer 47
3.8. PTS-84 Temperature Sensor 49
3.9. TCP-84 Temperature Sensor 50
3.10. Ultrasonic Liquid Level Sensor (USLS) 51
3.11. Burst Demodulator IP Core 52
3.12. Solid State Recorder (SSR) 53
3.13. Transmit-Receive Module 54
3.15. L-BAND True Time Delay Phase Shifter 56
3.16. Ka Band 5W Solid State Power Amplifier 57
3.17. 15W C Band Solid State Power Amplifier 58
3.18. C band Active Radar Calibrator 59
3.19. Miniaturised High Frequency DC DC Converter 60
3.20. Supercapacitors 61
3.21. Ultrasonic Burning Rate Measurement System (UBRMS) 63
3.22. MEMS Acoustic Sensor 64
3.23. Thermal Sensors 65
3.24. TRISP (Triple Input Smart Power supply) 66
3.25. Dual Polarized, S&X Band Mono Pulse Feed for Tracking LEO Satellites 68
3.26. Integrated Tracking System for Satellite Auto Track 70
3.27. Programmable IF Matrix 71
3.28. Design & Development of FPGA based Digital Demodulator 73
3.29. Low Noise Amplifiers (LNAs) and RF Amplifiers for GNSS & VHF bands 75
3.30. E-Plane Filter 77
3.31. Evanescent Mode Filters 79
3.32. Battery Charge Regulator (BCR) 81
3.33. Battery Discharge Regulator 83
3.34. Eddy Current Damper 85
3.35. Foil Heaters using Pyralux® Adhesive 87
3.36. Fine line PCB Technology for Fine-pitch surface Mount Devices 89
3.37. Rigid-flex multilayer PCB Technology 91
3.38. HMC DC-DC Converters (30W) 93
3.39. Advanced High Data Rate Modulator 95
3.40. Miniaturized methane sensor based on GRIN lens 97
3.41. Active 3D Imaging Lidar Camera 99
3.42. Highly Accelerated Thermal Shock (HATS) System for assessment of PCB via reliability 101

4. Remote Sensing 103
4.1. Cal-Val Systems For Spaceborne Ocean Colour Sensors 103
4.2. Photosynthesis Irradiance Incubator 104
4.3. Ground Penetrating Radar (GPR) 105
4.4. Detection of Landslides from High Resolution Optical Satellite Data 107

5. Software 109
5.1. e-smart Software 109
5.2. Methods and system to control the data processing workflows in distributed environment with asynchronous message driven mechanism 111
5.3. Microwave Data Analysis Software (MIDAS) 112

6. Process 113
6.1. Lithography and Patterning on Thin Film for Hi-Rel MIC 113
6.2. Low Temperature Co-fired Ceramics (LTCC) 115
6.4. Smart Fire Retardant Coating 118
6.5. Gold Plating On Aluminium 6061 T6 and Kovar 120
6.6. Cr-Cu-Au metallisation for Hi-Rel MIC fabrication 121
6.7. Silver Plated Waveguides Technology 123
6.8. Thermal Control Coating Technology 124
6.9. Flameproofing Coating-Caspol 125
6.10. Corrosion Resistant Coating NRCM-204 128
6.11. Silicone polymer based thermal protection system : PC-10 TPS (Red) and (White) 129
6.12. High Emissive Silicone Coating, HESC/CSNM-29 130
6.13. FB-CVI for realisation of C-C Composite 131
6.15. Anodising on Titanium Alloys 134
6.16. Pulse Hard Anodising 135
6.17. Nanoparticle (Silver & Gold) coating on Aluminum 136
6.18. Nano-Structured Metal Deposition by electroplating method for PCB required for Space Application 138
6.19. Electroless Nickel Electroless Palladium Immersion Gold (ENEPIG) process For Printed Circuit Boards
6.20. Gold plated PTH / Non PTH PCBs

7. Mechanical and Pneumatics
7.1. Precision Tapping Attachment
7.2. Vibration Management Solutions
7.3. Fabrication of Waveguide Runs
7.4. Sit on Umbilicals for remote Fluid servicing of Launch
7.5. Tool For Connector Pin & Teflon Trimming

8. OPTICS
8.1. SAC Video Imaging System (SVIS)
8.2. Optical imaging System

9. MATERIALS & CHEMICALS
9.1. Film Adhesives EFA-1753 and EFA-1752
9.2. EPG 2601[M]
9.3. ROCASIN
9.4. 5-Aminoterazole Nitrate
9.5. BMT Ceramics
9.6. DK-18 Ceramics
9.7. High-Permittivity Ceramic (DK36) for R F Applications
9.8. CRYO Adhesive EPIFIL-9661
9.9. Matrix resin for composite application EPY PEEKTOH
9.10. Guanidinium Azotetrazolate (GZT)
9.11. Polymethylsiloxane [PDMS]
9.13. Phenolic Matrix Resin (PF-108)
9.15. Silica Fibres
9.16. Silica Granules
9.17. Silica Aerogel by Ambient Pressure Drying Method
9.18. Silica Aerogel Based Composite Sheet
9.19. Waterproofing Compound RWPC-03
9.20. Sealant EPY 2121N
9.21. Adbond EPP-3521 171
9.22. Umbilical Pads 172
9.23. Low Density Epdm Based Thermal Insulation 173
9.24. Coating Compound EPY 1061 174
9.25. Benzoxazine Polymer 175
9.27. Silicone Polymer Based Low Density Syntactic Foam TPS, SSF P-70 177

List of Industries 178
1. **ANTENNAS**

1.1. **C/Ku Ortho Mode Transducer for combined C/Ku Receive Feed Systems**
Space Applications Centre has developed a C/Ku Ortho Mode Transducer for combined C/Ku receive feed systems. Such an Ortho Mode Transducer permits combination of separate C and Ku terminals into a single system thereby effecting infrastructure and cost savings.

1.2. **Dual feed Square Patch antenna for Reporting Terminal**
Space Applications Centre has designed and developed a light weight compact volume profile Dual Feed Square Patch antenna for Reporting Terminal.

1.3. **Dual feed Square Patch antenna for Broadcast receiver**
Space Applications Centre has designed and developed light weight compact volume profile Dual Feed Square Patch antenna for Broadcast receiver.

1.4. **Multilayer Printed Antenna Technology**
Space Applications Centre has developed multilayer printed antenna array technology. Salient features include light weight structure, can be made conformal to the surface, computer controlled automated fixture for aligning layers, inspection and bonding of layers.

1.5. **Design of Ku/C/I and S Band Cassegrain Feed**
Space Applications Centre has developed near field measurement know-how & processing software to process the near field antenna measurement data. This is a unique, cost-effective and indigenously developed facility for testing of radars and antennas in lesser time than currently available.

1.6. **Patch Array Antenna for Portable Multimedia Terminal**
Space Applications Centre has designed and developed a light weight electromagnetically coupled stacked patch array antenna.

1.7. **X band Wide scan Active Phased Array Antenna**
Space Applications Centre has developed a multilayer microstrip antenna, suitable for wide scanning up to 60 degrees.

1.8. **Rapidly Deployable Multi-band VSAT Terminal for Disaster Management**
Space Application Centre has designed and developed Rapidly Deployable Multi-band VSAT Terminal specifically for any application requiring a compact, rugged, multi-band antenna which is rapidly deployable with minimal tools.

2. **Communication & Navigation**

2.1. **Distress Alert Transmitter (DAT-SG)**
Space Applications Centre has developed an advanced version of the original distress alert transmitter which is a UHF transmitter based on NavIC receiver module. This NavIC receiver module supports position determination as well as broadcast messages reception called NavIC messaging service.
2.2. Personnel Tracker
Space Applications Centre has developed a compact, light weight, battery-operated personnel tracker for providing position information in TDMA/Aloha mode of operation.

2.3. Two Way Mss Terminal for Vessel Tracking
Space Applications Centre has developed a low data rate two-way MSS terminal for tracking of small boats using in-house developed modern ASIC.

2.4. Mobile Satellite Services Terminal – Broadcast Receiver
Space Applications Centre has developed a handheld receive only terminal for multi channel reception of audio and video

2.5. Mobile Satellite Services Terminal – Portable multimedia terminal
Space Applications Centre has developed a portable multimedia terminal capable of supporting video, voice and data communication between terminals

2.6. Mobile Satellite Services Terminal – Reporting Terminal
Space Applications Centre has developed a handheld data reporting terminal, capable of supporting 1.2Kbps data rate from terminal to Hub

2.7. Mobile Satellite Services Terminal – Satellite Mobile Radio
Space Applications Centre has developed a handheld terminal for two-way voice and text message communication

2.8. Two-Channel Digital Monopulse Tracking Receiver for Earth Station
Space Applications Centre has developed a two-channel digital monopulse tracking receiver for earth station. The device is a 70-MHz monopulse tracking receiver. The monopulse tracking receiver is one of the sub-systems of monopulse antenna tracking system in large earth stations.

2.9. Navic Messaging and Positioning Receiver
Space Applications Centre has developed prototype hardware to provide positioning along with messaging services using the NavIC satellite constellation.

2.10. Radiosonde
Vikram Sarabhai Space Centre has developed an indigenous GPS sonde system using commercially off the shelf components [COTS] for high quality atmospheric parameter measurement.

2.11. Satellite Gateway Unit (SGU)
Space Application Centre has designed and developed SGU, which is useful to interface two different types of network – LAN and synchronous serial communication over satellite.
Space Application Centre has designed and developed a low cost satellite receiver by Interfacing a USB TV tuner and Raspberry pi supporting multiple digital TV standards.

2.13. **Pseudolite**
Space Application Centre has designed and developed Pseudolite based navigation system (PBNS) which is a standalone ground-based navigation system.

2.14. **Ferrite based Wave Guide Circulators and Isolators**
Space Application Centre has designed and developed Ferrite based high power waveguide circulators at Ku band and Ka band and low power isolators at Ka band.

2.15. **High Power Circulator-Switch Assembly**
Space Application Centre has designed and developed High Power Circulator-Switch Assembly, which is a 3 port system for signal duplexing between the payload transmitter and receiver systems in SAR payloads.

3. **RF & Electronics**

3.1. **SCPC Modem IP Core**
Space Applications Centre has designed and developed a SCPC modem IP core, which performs modulation & demodulation for enabling two-way communications through satellite network.

3.2. **V Band Low Noise Amplifier**
Space Applications Centre has developed a low noise amplifier designed at V band.

3.3. **21 NA Pressure Transducer**
Liquid Propulsion Systems Centre has developed a highly accurate, compact and light weight pressure transducer for sensing the absolute pressure.

3.4. **Differential Pressure Transducer (DPT)**
Liquid Propulsion Systems Centre has developed a pressure transducer capable of measuring difference in pressures at two points.

3.5. **HLP-85 Temperature Sensor**
Liquid Propulsion Systems Centre has developed a thermocouple probe capable of measuring temperature under severe environmental conditions.

3.6. **IDLV Pressure Transducer**
Liquid Propulsion Systems Centre has developed an internal diaphragm type pressure transducer for measuring absolute pressure.
3.7. **MEMS based Pressure Transducer**
Liquid Propulsion Systems Centre has developed a novel MEMS pressure transducer, which has widespread industrial and commercial applications.

3.8. **PTS-84 Temperature Sensor**
Liquid Propulsion Systems Centre has developed a temperature sensor which has potentially widespread applications in multiple domains.

3.9. **TCP-84 Temperature Sensor**
Liquid Propulsion Systems Centre has developed a fast response temperature sensor.

3.10. **Ultrasonic Liquid Level Sensor (USLS)**
Liquid Propulsion Systems Centre has developed a liquid level sensor functioning on the principle of sensing the presence of liquid medium between its sensing gap.

3.11. **Burst Demodulator IP Core**
Space Applications Centre has developed a burst demodulator which performs the demodulation of PSK modulated signal being transmitted in burst mode.

3.12. **Solid State Recorder (SSR)**
Space Applications Centre has designed and developed a Solid State Recorder (SSR) based on non-volatile flash memory for applications requiring high speed large volume data recording.

3.13. **Transmit-Receive Module**
Space Applications Centre has developed a transmit receive (TR) module which is very useful as both transmit and receive chains are accommodated in a single small housing for achieving higher gain.

3.14. **Power conditioning and Processing Unit**
Space Applications Centre has developed a Power Conditioning and Processing Unit (PCPU) for use in microwave remote sensing missions.

3.15. **L-band true time delay phase shifter**
Space Applications Centre has developed an integrated 6-bit GaAs MMIC digital phase shifter featuring two MMIC dies catering to 1024ps delay requirement.

3.16. **Ka Band 5W Solid State Power Amplifier**
Space Applications Centre has developed a 5W Ka-band [29.6-30.2 GHz] Solid State power amplifier, successfully integrated in the ground terminal of GSAT-4 project.

3.17. **15W C Band Solid State Power Amplifier**
Space Applications Centre has developed and qualified a design for 15W normal C band solid state power amplifier.
amplifier, tailored to meet this requirement on board GEOSAT satellites.

3.18. C-band Active Radar Calibrator
Space Applications Centre has developed a low noise amplifier designed at V band.

3.19. Miniaturised High Frequency Dc Dc Converter
Vikram Sarabhai Space Centre has developed a Miniaturized, High Frequency; Surface Mount Technology (SMT) based DC-DC Converter. These converters are designed for aerospace applications and can also be used for commercial/Industrial applications.

3.20. Supercapacitors
Vikram Sarabhai Space Centre has developed the technology for processing Supercapacitors (2.5 V) of varying capacitance values viz., 5 F, 120 F, 350 F and 500 F for catering to specific applications related to Space and Societal needs.

3.21. Ultrasonic Burning Rate Measurement System
Vikram Sarabhai Space Centre has Ultrasonic Burning Rate (UBR) measurement system for measuring burning rate of solid propellants. The system employs ultrasound pulses to measure thickness of burning solid propellant.

3.22. MEMS Acoustic Sensor
Vikram Sarabhai Space Centre has developed a piezoelectric MEMS sensor with built-in electronics to monitor the acoustic levels generated during the launch of a satellite launch vehicle.

3.23. Thermal Sensors
Vikram Sarabhai Space Centre has developed thin foil heat flux sensors and temperature probes.

3.24 Triple Input Smart Power Supply [TRISP]
Vikram Sarabhai Space Centre has developed Triple Input Smart Power Supply [TRISP] - an innovative power module with in-built UPS function to power Desktop PCs

3.25 Dual Polarized, S&X Band Mono Pulse Feed for Tracking LEO Satellites
National Remote Sensing Centre has designed and developed a dual polarized S/X Band feed to cater for data reception from remote sensing satellites, which adopts frequency re-use for data transmission

3.26 Integrated Tracking System for Satellite Auto Track
National Remote Sensing has developed a methodology for deriving the tracking error information from single channel mono pulse tracking feed for precision satellite tracking.
3.27 **Programmable IF Matrix**
National Remote Sensing Centre has developed a system to facilitate the connectivity between any Antenna Terminal IF to any Demodulator.

3.28 **Design & Development of FPGA based Digital Demodulator**
National Remote Sensing Centre has developed a small size, economical and power saving FPGA-based demodulator.

3.29 **Low Noise Amplifiers (LNAs) and RF Amplifiers for GNSS & VHF bands**
UR Rao Satellite Centre has developed Low Noise Amplifiers (LNAs) and RF Amplifiers for GNSS & VHF bands applications.

3.30 **E-Plane Filter**
UR Rao Satellite Centre has developed low loss, high Q band pass filter with high power handling capability designed for data transmission applications in LEO satellites.

3.31 **Evanescent Mode Filters**
UR Rao Satellite Centre has developed low loss microwave band pass filter designed for X-band data transmitter to allow required band of frequencies and rejecting all other frequencies.

3.32 **Battery Charge Regulator (BCR)**
UR Rao Satellite Centre has developed Battery Charge Regulator for battery charging and bus regulation. BCR designed with Constant Current-Constant Voltage (CC-CV) and bus priority loop to cater to LEO as well as GEO satellites.

3.33 **Battery Discharge Regulators (BDR)**
UR Rao Satellite Centre has developed Battery Discharge Regulator (BDR) to maintain the bus regulation during eclipse and peak power requirement periods to avoid the off-optimal operation of the solar array and consequent over sizing of battery.

3.34 **Eddy Current Damper**
UR Rao Satellite Centre has developed Eddy Current Damper, a deployment rate control device.

3.35 **Foil Heaters using Pyralux Adhesive**
UR Rao Satellite Centre has developed Kapton Foil heaters using Pyralux adhesive for power rating of 2.5 Watts per square inch.

3.36 **Fine line PCB Technology for Fine-pitch surface mount devices.**
UR Rao Satellite Centre has developed & qualified the technology for PCBs with fine conductor features of 5 mil trace width and 4 mil spacing to cater for various fine pitch surface mount devices.

3.37 **Rigid-flex multilayer PCB Technology**
UR Rao Satellite Centre has developed Rigid-flex multilayer PCB technology for high reliability 3D packaging applications in space electronics.
3.38. HMC DC-DC Converters
UR Rao Satellite Centre has developed 30W HMC DC-DC converters to meet electrical performance with high reliability requirements for space application with minimum size & weight.

3.39. Advanced High Data Rate Modulator
Space Application Centre has designed and developed Advanced High Data Rate Modulator, which provides Complete Digital implementation for GEO-optical payload.

3.40. Miniaturized Methane Sensor based on GRIN Lens
Space Application Centre has designed and developed miniaturized methane sensor using GRIN lens and small etalons is developed which is well capable to measure Earth methane and to fly on airborne platform to map Earth’s methane.

3.41. Active 3D Imaging Lidar Camera
Space Application Centre has designed and developed Active 3D imaging Lidar camera that works on Time-of-Flight (ToF) principle.

3.42. Highly Accelerated Thermal Shock (HATS) System for assessment of PCB via reliability
Space Applications Centre (SAC) has developed indigenous Highly Accelerated Thermal Shock (HATS) System for assessment of PCB via reliability.

4. Remote Sensing
4.1. Cal-Val Systems For Spaceborne Ocean Colour Sensors
Space Applications Centre has developed calibration-validation (CAL-VAL) systems for OceanSat-II OCM-II sensor’s calibration and its geophysical product validation.

4.2. Photosynthesis Irradiance Incubator
Space Applications Centre has designed and developed a photosynthetic irradiance incubator for marine and fresh water applications.

4.3. Ground Penetrating Radar (GPR)
Space Applications Centre has designed and developed a high resolution imaging radar that works on the principle of scattering of EM waves to locate buried objects.

4.4 Detection of Landslides from High Resolution Optical Satellite Data
National Remote Sensing Centre has developed a system for detection of landslides from high resolution satellite data in optical domain.
5. **Software**

5.1. **e-smart Software**
Space Applications Centre has developed an online software tool to automate and provide seamless end-to-end workflow management from designer to delivery – called the e-system for mechanical workflow management and reporting tool.

5.2. **Methods and system to control the data processing workflows in distributed environment with asynchronous message driven mechanism**
National Remote Sensing Centre has developed a system providing persistence and guaranteed delivery of messages, thereby improving the quality of service in transaction processing systems that are managing complex workflows.

5.3. **Microwave Data Analysis Software (MIDAS)**
Space Applications Centre (SAC) has developed Microwave Data Analysis Software (MIDAS) to cater to various application driven analysis methods to analysis microwave remote sensing data.

6. **Process & Coatings**

6.1. **Lithography and Patterning on Thin Film for Hi-Rel MIC**
Space Applications Centre has developed Lithography and patterning process on thin film for High-Reliability (Hi-Rel) Microwave Integrated Circuit (MIC) for space applications.

6.2. **Low Temperature Co-fired Ceramics (LTCC)**
Space Applications Centre has well established and space qualified Low Temperature Co-fired Ceramics (LTCC) facility for the fabrication of High-Rel circuit and packages for various satellite payloads.

6.3. **Black Anodizing on Aluminum 6061T6 & Chromating Technology**
Space Applications Centre has developed the electroplating process of black anodizing on Aluminium alloys for space hardware to achieve required surface engineering properties.

6.4. **Smart Fire Retardant Coating**
Space Applications Centre has developed an omnipurpose thin coating which can be applied easily on any substrate to obtain benefits in terms of fire retardant.

6.5. **Gold Plating On Aluminium 6061 T6 and Kovar**
Space Applications Centre has developed the electroplating process of gold plating on Aluminium alloys for space hardware to achieve required surface engineering properties.
6.6. **Cr-Cu-Au metallisation for Hi-Rel MIC fabrication**
Space Applications Centre has developed the process of Cr-Cu-Au (Chromium-Copper-Gold) metallisation on both sides (top and bottom side) of Alumina substrates using Magnetron sputtering techniques.

6.7. **Silver Plated Waveguides Technology**
Space Applications Centre has developed a method to carry out silver plating from inside in Aluminium waveguides.

6.8. **Thermal Control Coating Technology**
Space Applications Centre has qualified the process of thermal control coating for spacecraft subsystem components made of different materials.

6.9. **Flame proofing Coating-Caspol**
Vikram Sarabhai Space Centre has developed CASPOL (Ceramic-Polymer hybrid) – a water based, ready-to-coat and easy-to-use flame proof coating having both societal and advanced end-use applications.

6.10. **Corrosion Resistant Coating NRCM-204**
Vikram Sarabhai Space Centre has developed NRCM-204 – a corrosion resistant coating material for metals and composites to protect from various environments like nitric oxide, dinitrogen tetroxide (N2O4), mixed oxides of nitrogen, concentrated nitric acid (Conc. HNO3) etc.

6.11. **Silicone polymer based thermal protection system : PC-10 TPS (Red) and (White)**
Vikram Sarabhai Space Centre has developed a technology for processing and application of different types of silicone polymer based thermal protection systems with tailored properties to meet various mission/application requirements.

6.12. **High Emissive Silicone Coating, HESC/CSNM-29**
Vikram Sarabhai Space Centre has developed HESC/CSNM-29 – a special coating system developed as a high temperature resistant enamel coating.

6.13. **FB-CVI for realisation of C-C Composite**
Vikram Sarabhai Space Centre has developed the Film Boiling Chemical Vapour Infiltration (FB-CVI) technology for realization of Carbon-Carbon Composite products.

U R Rao Satellite Centre has developed a hard anodizing process, which produces a thick ceramic like coatings on Aluminum and its alloys.

6.15. **Anodising on Titanium Alloys**
UR Rao Satellite Centre has developed anodizing process for Titanium and its alloys to import corrosion resistance and multicolored aesthetic appearances used for colour coding applications.

6.16. **Pulse Hard Anodising**
UR Rao Satellite Centre has developed pulse hard anodizing process on aluminium alloys. It will be used in the engineering industry for components where abrasion resistance is the required primary characteristic of the coating.
6.17. **Nanoparticle coating (Silver & Gold) on Aluminum**
Space Applications Centre (SAC) has developed and qualified a robust Nanoparticle (Silver & Gold) coating on Aluminium 6061T6.

6.18. **Nano-Structured Metal Deposition by electroplating method for PCB required for Space Application**
Space Applications Centre (SAC) has developed Nano-Structured Metal Deposition by electroplating method for PCB.

6.19. **Electroless Nickel Electroless Palladium Immersion Gold (ENEPIG) process for Printed Circuit Boards**
Space Applications Centre (SAC) has developed Electroless Nickel Electroless Palladium Immersion Gold (ENEPIG) surface finish is most suitable surface finish.

6.20. **Gold plated PTH / Non PTH PCBs**
Space Applications Centre (SAC) has developed Gold plated PTH / Non PTH PCBs on PTFE based substrates for RF/ mm wave applications for space and ground use.

7. **Mechanical and Pneumatics**

7.1. **Precision Tapping Attachment**
Space Applications Centre has developed a Precision Tapping Attachment which is much useful for precision tapping in mechanical packages.

7.2. **Vibration Management Solutions**
Space Applications Centre has developed solutions to protect electronics and optical systems in vibration and shock environments during transportation on ground and space.

7.3. **Fabrication of Waveguide Runs**
Space Applications Centre has developed an innovative Process technology to fabricate Waveguide run from Thin Walled Rectangular Tubes having various cross sectional dimensions.

7.4. **Sit on Umbilicals for remote Fluid servicing of Launch**
Liquid Propulsion Systems Centre has developed a system for carrying out remote fluid servicing of launch vehicle on the launch pad. The system has potential applications in other allied industries viz. aerospace, automotive, oil, etc.

7.5 **Tool for Connector Pin & Teflon Trimming**
Space Applications Centre (SAC) has developed Tool for Connector Pin & Teflon Trimming for Teflon & pin trimming with ± 50 µm accuracy.
8. OPTICS

8.1. SAC Video Imaging System (SVIS)
Space Applications Centre has designed and developed a state of the art Video Imaging System called as “SVIS”. It is a space grade certified system that provides high resolution color images with higher frame rates.

8.2. Optical Imaging System
Space Applications Centre has developed an optical imaging system with potential applications in imaging during day time as well as twilight conditions, scientific studies and astronomy.

9. Materials & Chemicals

9.1. Film Adhesives EFA-1753 and EFA-1752
Vikram Sarabhai Space Centre has developed an epoxy film adhesive; EFA-1753 (300 GSM) and EFA-1752 (200 GSM) (in the form of continuous film) that cures at elevated temperature and possess good adhesive strength and filleting properties.

9.2. EPG 2601[M]
Vikram Sarabhai Space Centre has developed ADBOND EPG 2601M – a chemical for bonding of honeycomb structures and capable of working under harsh space environments such as thermo-vacuum, thermal cycling, radiation etc.

9.3. ROCASIN
Vikram Sarabhai Space Centre has developed a rubber compound based on the copolymer of acrylonitrile and polybutadiene, specially formulated to serve as a rocket motor case insulation. The product can be used as a thermal insulation barrier layer for various equipments and systems wherever required.

9.4. 5-Aminoterazole Nitrate
Vikram Sarabhai Space Centre has developed 5-Aminotetrazole Nitrate (ATN) - a nitrogen rich oxidizer, an ideal ingredient for green propellant.

9.5. BMT Ceramics
Vikram Sarabhai Space Centre has developed Barium Magnesium Tantalite (BMT) – a typical perovskite ceramic, which is widely used in oscillators, multiplexers, filters etc above 10GHz in satellite and terrestrial microwave communication system.

9.6. DK-18 Ceramics
Vikram Sarabhai Space Centre has developed DK-18 – a MgTiO3 based ceramic, which is widely used as Patch Antenna substrates in Satellite and GPS communication systems.
9.7. **High-Permittivity Ceramic (DK36) for R F Applications**
Vikram Sarabhai Space Centre has developed process technology for realization of DK-36 ceramics, which finds applications use in devices like filters, oscillators, diplexers, patch antennas etc.

9.8. **CRYO Adhesive EPIFIL-9661**
Vikram Sarabhai Space Centre has developed process technology for realization of DK-36 ceramics, which finds applications use in devices like filters, oscillators, diplexers, patch antennas etc.

9.9. **Matrix resin for composite application EPY PEEKTOH**
Vikram Sarabhai Space Centre has developed EPY PEEKTOH - an elevated temperature curing high performance epoxy resin matrix suitable for composite applications.

9.10. **Guanidinium Azotetrazolate (GZT)**
Vikram Sarabhai Space Centre has developed Guanidinium Azotetrazolate (GZT) – a nitrogen rich, carbon poor stable organic compound, finding application as a good fuel additive for gas generator compositions.

9.11. **Polydimethylsilane [PDMS]**
Vikram Sarabhai Space Centre has developed Polydimethylsilane (PDMS) - a pre- ceramic polymer precursor finding application in the synthesis of polycarbosilane (PCS), which in turn is the polymeric precursor for Silicon Carbide [SiC].

9.12. **Phenolic Resin [PF-106]**
Vikram Sarabhai Space Centre has developed PF 106 -a high temperature curing resin which has excellent ablative properties and char strength.

Vikram Sarabhai Space Centre has developed PF 108 – a special grade liquid phenolic matrix resin.

Vikram Sarabhai Space Centre has developed a room temperature curable single part adhesive, SILCEM R9 based on polysiloxane for multipurpose bonding applications.

9.15. **Silica Fibres**
Vikram Sarabhai Space Centre has developed a new technology for developing silica fibres by sol-gel process. The fibres can be used for high temperature insulation up to 1500°C.

9.16. **Silica Granules**
Vikram Sarabhai Space Centre has developed a new technology for developing silica granules of fine sizes.

9.17. **Silica Aerogel by Ambient Pressure Drying Method**
Vikram Sarabhai Space Centre has developed hydrophobic silica aerogel in granular/powder form by
technology transfer

9.18. Silica Aerogel Based Composite Sheet
Vikram Sarabhai Space Centre has developed hydrophobic silica aerogel in granular/powder form by a simple and cost-effective ambient pressure drying process. Using the developed aerogel powders, flexible, hydrophobic aerogel sheets have also been developed.

9.19. Waterproofing Compound RWPC-03
RWPC-03 is a waterproofing compound developed by VSSC for the waterproofing of silica tiles and silica felt/fabric based flexible insulations.

9.20. Sealant EPY 2121N
Vikram Sarabhai Space Centre has developed EPY 2121N - a two-part epoxy–amine based sealant containing mica filler which impart high insulation resistance.

9.21. Adbond EPP-3521
Vikram Sarabhai Space Centre has developed ADBOND EPP 3521 - a rubber based adhesive system developed for mounting various electronic systems to the structural elements.

9.22. Umbilical Pads
Vikram Sarabhai Space Centre has developed Umbilical pads - semi-rigid foams which are developed based on polyurethane (PU) polymeric systems having energy absorbing capabilities.

9.23 Low density EPDM based thermal insulation
Vikram Sarabhai Space Centre has developed a light weight/low density solid rocket motor thermal insulation material based on EPDM rubber

9.24 Coating compound EPY 1061
Vikram Sarabhai Space Centre has developed an amidoamine modified epoxy based system specially developed to protect the metal surfaces from corrosion in aqueous strontium perchlorate medium.

9.25 Benzoxazine polymer
Vikram Sarabhai Space Centre has developed Benzoxazine Polymer, a matrix resin suitable for thermal insulations, adhesive formulations and encapsulant in PCB industry.

9.26 Compensated Alumina for Electronic Applications
Vikram Sarabhai Space Centre has developed a ceramic, with Alumina as a major component, along with some adhesives and dopants, finding applications in various electronics.

9.27 Silicone polymer based low density syntactic foam TPS, SSF P-70
Vikram Sarabhai Space Centre has developed a low density thermal protection system based on silicone polymer.
Space Applications Centre has developed a C/Ku Ortho Mode Transducer for combined C/Ku receive feed systems. Such an Ortho Mode Transducer permits combination of separate C and Ku terminals into a single system thereby effecting infrastructure and cost savings.

Technical Description

The polarization and frequency diplexing for combined C/Ku Feed system is carried out by two distinct OMTs on each for the respective bands. The Ortho Mode Transducers serves to separate the incoming signals depending on the polarization and the frequency and make them available at distinct ports for further processing. The configuration for OMTs in the respective bands differs as considerations for realizing requisite in band performance are different. The OMTs are connected by appropriate waveguide transitions.

C Band OMT

The C band OMT configuration comprises of a common circular waveguide with different diameters at both ends which communicates both C and Ku band signals.

The signals of vertical and horizontal polarization are coupled through a pair of axial slots placed around the periphery of the common circular waveguide at an angular interval of 90° between the slots. The slots are uniquely profiled for effecting coupling of the C band signals and not degrading the Ku band signals. The symmetrical configuration and unique profile of the slot ensures that no higher order modes are generated at such discontinuities which may degrade the Ku band signals. The branching waveguide network then communicate the coupled signals from each pair of slots to suitable power combining components such as Magic T, one each for the respective polarization.

Applications

VSAT Network

ISRO offers to transfer technology of combined C/Ku Receive feed system to industries in India with adequate experience and facilities. Enterprises interested in obtaining knowhow may write giving details of their present activities, infrastructure and facilities.

Ku Band OMT

The Ku band OMT consist of a central circular waveguide closed at one end with four branching rectangular waveguides symmetrically arranged around it. A pair of such collinear rectangular waveguides communicates signals of the same polarization to the power combining network. The central circular waveguide consist of a unique matching element. The matching element serves to...
effect a good match for the incoming signals. The symmetrical configuration chosen is to circumvent that no higher order modes are generated at the common junctions. The power combining network can either be effected with Magic T or simple E plane bifurcated waveguide power combiners.

Specifications

Frequency Bands
- C - Band : 3.7 GHz - 4.2 GHz
- Ku - Band : 10.95 GHz - 12.75 GHz

Polarization
- Dual - Linear (Lin- V / Lin- H)

VSWR
- C -Band : 1.65 @3.7 GHz - 4.2 GHz
- Ku- Band : 1.4 @10.95 GHz - 12.75 GHz

Insertion Loss
- C -Band : 0.5 dB [Typ] @3.7 GHz - 4.2 GHz
- Ku- Band : 0.7 dB [Typ] @10.95 GHz - 12.75 GHz

Isolation
- C -Band Lin-V to Lin- H: 35 dB min
- C -Band to Ku-Band: 70 dB min
- Ku -Band Lin-V to Lin- H: 35 dB
- Ku-Band to C-Band: 70 dB

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Dual feed Square Patch antenna for Reporting Terminal

Introduction

Designed and developed light weight compact volume profile Dual Feed Square Patch antenna for Reporting Terminal. Antenna is optimized with ABS radome & tested. Measured return loss is better than 17 dB over Transmit band. Measured gain and axial ratio is better than 2.5 dB and less than 3 dB up to theta ±45° in all phi planes. Antenna with radome is tested in terminal from GSAT-6 Satellite.

Developed Hardware:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parameters</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Frequency band</td>
<td>2.67-2.69 GHz</td>
</tr>
<tr>
<td>2.</td>
<td>Return loss</td>
<td>Better than 17 dB</td>
</tr>
<tr>
<td>3.</td>
<td>Gain</td>
<td>2.5 dB at theta ±45° in all phi planes</td>
</tr>
<tr>
<td>4.</td>
<td>Axial ratio</td>
<td>Less than 3 dB at theta ±45° in all phi planes</td>
</tr>
<tr>
<td>5.</td>
<td>Size</td>
<td>44x44x3 mm³</td>
</tr>
<tr>
<td>6.</td>
<td>Weight</td>
<td>12 gm</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Introduction:
Designed and developed light weight compact volume profile Dual Feed Square Patch antenna for Broadcast receiver. Antenna is optimized with ABS radome & tested. Measured return loss is better than 17 dB over receive S band. Measured gain and axial ratio is better than 2.5 dB and less than 3 dB up to theta ±45° in all phi planes. Antenna with radome is tested in terminal from GSAT-6 Satellite.

Features:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parameters</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Frequency band</td>
<td>2.56-2.59 GHz</td>
</tr>
<tr>
<td>2.</td>
<td>Return loss</td>
<td>Better than 17 dB</td>
</tr>
<tr>
<td>3.</td>
<td>Gain</td>
<td>2.5dB at theta ±45° in all phi planes</td>
</tr>
<tr>
<td>4.</td>
<td>Axial ratio</td>
<td>Less than 3dB at theta ±45° in all phi planes</td>
</tr>
<tr>
<td>5.</td>
<td>Size</td>
<td>70x70x5 mm³</td>
</tr>
<tr>
<td>6.</td>
<td>Weight</td>
<td>30 gm</td>
</tr>
</tbody>
</table>

Developed Hardware:

Technology Transfer from ISRO
ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre of ISRO has developed multilayer printed antenna array technology. Salient features of the technology include light weight structure, can be made conformal to the surface, computer controlled automated fixture for aligning layers, inspection of layers and bonding of layers. There is an ever increasing demand of multilayer printed antenna from mobile communication to very sophisticated space qualified active phased array antenna systems.

The design includes the usage of new light weight & low dielectric constant material for high radiation efficiency, low surface wave propagation and low cross polar suppression. Development includes fixture capable of performing surface roughness using laser, inspection of PCB, high speed drilling, vacuum bagging for bonding all the antenna layers and vacuum gripping for pick and place.

Terminal Specifications

- **Antenna Type**: Planar
- **Cross Polarization**: Better than -30 dB
- **Beam width and Gain**: As per specifications (efficiency better than 60%)
- **Bandwidth**: Up to 40% (2.1 VSWR)
- **Polarization**: Vertical/Horizontal/Circular
- **Size**: Up to 1.2 M x 1.2 M
- **Alignment**: 20 micron
- **Inspection**: 10 micron
- **Repeatability**: 5 micron
- **Curing Chamber**: 1.3 M x 1.3 M
- **Magnification**: 50 x / 100 x
- **Clean Room**: Class 1 lac
- **Drilling Speed**: 40,000 rpm

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre of ISRO has designed Ku/C/L/S band Cassegrain feed for its own payload missions. These feeds are used in earth station antenna.

Earth station antenna is used to provide communication and/or tracking, telemetry and tele-command to various in-orbit satellites. Earth station antenna for communication and/or tracking for geostationary orbit satellites typically consist of Main reflector, sub-reflector, feed system, LNA, power amplifiers, control units, network control management and its associated circuitry.

One of the most important elements in earth station antenna is feed system. Feed system is used to transmit/receive power from amplifier to sub/main reflector. It also serves to provide the desired radiation patterns to reflectors to achieve the specified gain. Feed system combines / separates different polarizations and/or transmit/receive/tracking frequency bands. It is the feed system’s insertion-loss, return-loss, tracking performance, radiation patterns, polarization and transmit/receive isolation, power handling capability – which determines the overall earth station antenna performance, governs EIRP and G/T.

So, ISRO offers to transfer technology of different feeds to industries in India with adequate experience and facilities. Enterprises interested in obtaining knowhow may write giving details of their present activities, infrastructure and facilities.

Specifications

Ku band Cassegrain feed for 7.2m antenna

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Item description</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Operating Frequency</td>
<td>10.70 GHz to 12.00GHz 12.75 GHz to 14.00GHz</td>
</tr>
<tr>
<td>2.</td>
<td>Feed Type</td>
<td>4 port LP rotatable frequency re-use feed. 2 ports for Tx and 2 ports for Rx.</td>
</tr>
<tr>
<td>3.</td>
<td>Feed Insertion Loss</td>
<td>< 0.6dB < 0.5dB</td>
</tr>
<tr>
<td>4.</td>
<td>Feed VSWR at feed flange</td>
<td>1.3:1 Typical</td>
</tr>
<tr>
<td>5.</td>
<td>Power Rating</td>
<td>2.4 KW CW Per Port</td>
</tr>
<tr>
<td>6.</td>
<td>Waveguide Interface</td>
<td>CPR 75 (square flange, four hole) CPR 75 (square flange, four hole)</td>
</tr>
<tr>
<td>7.</td>
<td>Isolation</td>
<td>Tx-Tx > 35dB Rx-Rx > 35dB Tx-Rx > 85dB XPD > 30dB</td>
</tr>
</tbody>
</table>

Note- Above is the specs of feed system which will be compliant to 7.2m Cassegrain antenna.
C band LP/CP Cassegrain feed for 7.2m and 11m antenna

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Item description</th>
<th>Specifications</th>
</tr>
</thead>
</table>
| 1. | Operating Frequency | **Receive** 3.625-4.200 GHz
Transmit 5.850-6.425 GHz |
| 2. | Feed Type | 4 port selectable LP/CP frequency re-use feed.
2 ports for Tx and 2 ports for Rx. |
| 3. | Feed Insertion Loss | **Receive** < 0.9 dB
Transmit < 0.8 dB |
| 4. | Feed VSWR at feed flange | 1.3:1 Typical |
| 5. | Power Rating | 2.0 KW CW Per Port |
| 6. | Waveguide Interface | **Receive** WR 137 (for 6 GHz band)
Transmit WR 229 (for 4 GHz band) |
| 7. | Isolation | **Tx-Tx** > 35 dB
Rx-Rx > 35 dB
Tx-Rx > 85 dB
XPD > 30 dB |

Note: Above is the specifications of feed system which will be compliant to 7.2m and 11m Cassegrain antenna.

L and S band Cassegrain feed for 11m antenna

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Item description</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Antenna Size and Type</td>
<td>11 meter Cassegrain Antenna</td>
</tr>
<tr>
<td>2.</td>
<td>Feed type</td>
<td>4 port circularly polarized L & S Band receive only feed system</td>
</tr>
</tbody>
</table>
| 3. | Operating Frequency | **L Band** 1150 to 1650 MHz
S Band 2475 to 2540 MHz |
| 4. | Gain at Feed Output | 39.4 + 20 log \(F/1.15\) dBi (L Band Rx)
45.4 + 20 log \(F/2.475\) dBi (S Band Rx) |
| 5. | G/T at 5 deg. Elevation | 17.9 dB/ deg K + 20 log \(F/1.15\) (L Band)
23.4 dB/ deg K + 20 log \(F/2.475\) (S- Band) |
| 6. | Polarization (Rx) | Dual Circular (RHCP/LHCP) in both the bands |
| 7. | VSWR | 1.5 : 1 Typical in both Receive Bands |
| 8. | Axial Ratio within 1 dB BW | 1.5 dB in both Receive Bands |
| 9. | Feed Insertion Loss | <0.9 dB |
| 10. | Rx to Rx port isolation in both bands | 20 dB min. |
| 11. | Rx Pattern | Shall conform to ITU-RS 580\(^3\). Typical first side lobe level shall be better than 14 dB. |

Note: Above is the specifications of feed system which will be compliant to 7.2m and 11m Cassegrain antenna.
Patch Array Antenna for Portable Multimedia Terminal

Introduction:
Designed and developed light weight Electromagnetically coupled Stacked Patch array antenna. 8-elemnt Dual Feed Square Patch array is used for required gain. Antenna is optimized with ABS radome & tested. Measured return loss is better than 17 dB over Transmit/Receive band. Measured gain and axial ratio is better than 15.5 dB and less than 1 dB. Antenna with radome is tested in terminal from GSAT-6 Satellite.

Developed Hardware:

Features:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parameters</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Frequency band</td>
<td>Rx: 2.56-2.59 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tx: 2.67-2.69 GHz</td>
</tr>
<tr>
<td>2.</td>
<td>Return loss</td>
<td>Better than 17 dB</td>
</tr>
<tr>
<td>3.</td>
<td>Gain</td>
<td>15.5 dB</td>
</tr>
<tr>
<td>4.</td>
<td>Axial ratio</td>
<td>Less than 3 dB</td>
</tr>
<tr>
<td>5.</td>
<td>Size</td>
<td>385x195x12 mm³</td>
</tr>
<tr>
<td>6.</td>
<td>Weight</td>
<td>280 gm</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO
ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
X band Wide scan Active Phased Array Antenna

Design Features
- Multilayer Microstrip antenna
- Suitable for wide scanning up to 60 degree
- Wide Bandwidth as compared to contemporary system
- Available simulation tools and customized code for planar antenna

Major Specifications
- Frequency : L band to X Band
- VSWR : 1.5:1
- Gain : better than 20 dB
- Bandwidth : 5-10 %
- Polarization : Vertical, Horizontal & Dual
- Peak Power : up to 15% Duty Cycle
- Scanning Capability : Azimuth ± 60°, Elevation ± 60°
- Measurement of Active Antenna Element Pattern

Capabilities
- Multilayer Antenna development facility at SAC
- Qualified Materials for sustaining extreme temperature range
- Compact Antenna Test Facility for Accurate Pattern Measurement
- Developed & characterized wide scan active phased array antenna
- Developed 8X8 X band planar array antenna

Applications
- Wide scanning antenna
- Tracking radar
- Phased array antenna

Technology Transfer from ISRO
ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Rapidly Deployable Multi-band VSAT Terminal for Disaster Management

A m-VSAT antenna terminal is designed specifically for any application requiring a compact, rugged, multi-band antenna which is rapidly deployable with no or minimal tools. It includes a multi-segmented glass fiber high density foam reflector, ensuring a very cost effective, light weight and excellent strength with very less deformation, even after being re-assembled hundreds of times. The m-VSAT terminal has a unique multi-band ring focus feed assembly allowing a change of frequency band in a matter of minutes simply by swapping out a quick release feed latches.

It is fully motorized and it can automatically acquire and track, even on inclined orbit satellites. Features such as fully adjustable wide spreading legs for high stability on any terrain.

For transportation it packs into its own mount which splits into two conveniently sized flight cases and one feed carrying case for transportation.

Applications area

Highly useful in Disaster situations which quickly deployable, requiring minimal tools, light weight, easy to transport VSAT system. This system is compliant for ISRO satellite/commercial band.
Specifications:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Key Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Antenna Type</td>
</tr>
<tr>
<td>2.</td>
<td>Diameter</td>
</tr>
<tr>
<td>3.</td>
<td>Configuration</td>
</tr>
<tr>
<td>4.</td>
<td>Polarization</td>
</tr>
<tr>
<td>5.</td>
<td>Power Requirement</td>
</tr>
<tr>
<td>6.</td>
<td>Temperature</td>
</tr>
<tr>
<td>7.</td>
<td>Wind Rating</td>
</tr>
<tr>
<td>8.</td>
<td>Altitude</td>
</tr>
<tr>
<td>9.</td>
<td>Humidity</td>
</tr>
<tr>
<td>10.</td>
<td>Elevation Adjustment</td>
</tr>
<tr>
<td>11.</td>
<td>Azimuth Adjustment</td>
</tr>
<tr>
<td>12.</td>
<td>Polarization Adjustment</td>
</tr>
<tr>
<td>13.</td>
<td>Packed Size</td>
</tr>
<tr>
<td>14.</td>
<td>Weight</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre (ISRO) has developed the Distress Alert Transmitter-Second Generation (DAT-SG) which is a UHF transmitter based on NavIC receiver module. This NavIC receiver module supports position determination as well as broadcast messages reception called NavIC messaging service. The end users are mainly fishermen of small boats who can use this device for emergency messages reporting with position information and the unit can also help them receive useful information like Potential Fishing Zone, weather alerts etc. as supported by NavIC messaging service.

Features

<table>
<thead>
<tr>
<th>Modulation</th>
<th>BPSK/QPSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Rate</td>
<td>300 bps</td>
</tr>
<tr>
<td>Amp. Imbalance</td>
<td>±0.3 dB</td>
</tr>
<tr>
<td>Phase Imbalance</td>
<td>±3 deg.</td>
</tr>
<tr>
<td>Waveform</td>
<td>BPSK with rate ½ FEC</td>
</tr>
<tr>
<td>Output Power</td>
<td>5 W [37 dBm ± 1 dB]</td>
</tr>
<tr>
<td>Power supply</td>
<td>7.2V Primary Lithium Battery</td>
</tr>
</tbody>
</table>

Technology Deliverables

- Schematics, Gerber
- Hex code for firmware
- Limited Support for Development

Present Platform details

- Microcontroller: MSP 430
- Frequency: UHF
- NavIC: SkyTraq
Personnel Tracker

Salient Feature
- Position information in TDMA / Aloha mode of operation
- Supports Small message as well as data transfer through satellite
- USB/Bluetooth user data Interface
- Handheld with battery operated
- Light weight and size within bond of 220x80x40 mm

Specifications
- Single Patch antenna with minimum 2.5 dBi gain over ±45 deg beam-width
- Terminal EIRP: -1 dBW with 0.5W Power Amplifier
- Burst Mode Transmission at 1.2/ 2.4 kbps with maximum payload of 80 char
- Convolution rate ½ coding for forward error correction
- BPSK/QPSK modulation
- Channel spacing: 10.0 KHz
MSS Network

- MSS Network with five user beams covering India
- User position display on GIS map in real-time
- Received user message forwarding from MSS HUB through Email, FTP etc.
- Web Based GIS support available

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Two Way MSS Terminal For Vessel Tracking

SAC, ISRO has developed low data rate two-way MSS terminal for tracking of small boats using in-house developed modem ASIC.

End usage: Vessel Tracking

It is developed for tracking of small boat, Other possible application be used for

- Message services
- Disaster warning dissemination
- Potential fishing zone dissemination
- Asset Tracking Services

Specifications

- Single patch antenna having 2.5 dBi gain over ±45 deg beam-width
- Terminal EIRP: 3.0 dBW min.
- 250 ms time slot for reporting
- Rate ½ forward error correction
- QPSK Modulation
- Channel spacing 10.0 KHz

Operating 24x7 in Indian Water

Real time tracking of Boat displayed on GIS

Salient Features

- Forward Link: 9.6 kbps
- Return Link: 2.4 kbps
- Channel Access- Dynamic TDMA
- In-built GAGAN/ NavIC for position
- Bluetooth/Wi-Fi user interface
- Mast mountable
- IP65 compliance package
- Battery backup & light weight

Coastal security network
Mobile Satellite Services Terminal
Broadcast Receiver (Handheld Receive only Terminal for multichannel reception of Audio and Video)

Features
• Reconfigurable DVB-S Receiver: 512 Kbps to 5.5 MSPS
• USB Powered
• Supports Windows / Android OS
• Power Consumption: < 1.8W
• Weight: 180 gm (Without tablet/display)
• Broadcast Receiver for multichannel video, news, emergency message etc.

Specifications
• Single patch antenna having 2.5 dBi gain over ±45 deg.
• Terminal G/T: -23.0 dB/K
• DVB-S Waveform: QPSK Modulation with 1/2 Convolution + RS encoding (204,188)
• Bandwidth required: 1.5 MHz @ 1.024 Mbps
• Single carrier broadcast

Major Applications
• Multichannel Reception of Audio, Video & Data (From Hub to terminal)
• Usable on moving vehicles

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Mobile Satellite Services Terminal

Portable Multimedia Terminal

Features

- Support video, voice and data communication between terminals
- Portable terminal
- QPSK Modulation
- Size: 400 x 200 x 55 mm
- Weight: 3.0 Kg

Specifications

- 8 patch antenna having 15.5 dBi gain
- Terminal EIRP: 17.0 dBW at 2W power amplifier
- Terminal G/T: -9 dB/0K
- Data rate: 144 Kbps
- FEC: Convolution rate ½ / (Rate ½ Convolution + RS Code (112,126))
- Bandwidth required: 194.4 KHz
- Channel spacing: 200 KHz

Major Applications

- Video-conferencing
- Two way IP based data-transfer
- Mobile Hot Spot
- IP Telephony

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Mobile Satellite Services Terminal
Reporting Terminal (Handheld Data Reporting Terminal)

Features
• Support 1.2 Kbps data rate from terminal to HUB
• Small message reporting
• In-built GPS to provide position
• RS232/USB/ Bluetooth user data interface
• Low Power & Weight
• Handheld with Size: 220 x 88 x 40 mm
• Weight: 450 gm (with battery) 160 gm (without keypad & display)

Specifications
• Single patch antenna having 2.5 dBi gain over ±45 deg
• Terminal EIRP: -1 dBW at 0.5W power amplifier
• Burst mode transmission rate 1.2 Kbps (Terminal to HUB)
• 1 sec. time slot to accommodate large no of terminal in single carrier
• Rate ½ forward error correction
• BPSK Modulation
• Band width required 3.2 KHz
• Channel spacing 10.0 KHz

Major Applications
• Terminal to Hub Location Reporting
• Data collection platforms
• Short Message Services
• Asset Tracking Services
Mobile Satellite Services Terminal

Satellite Mobile Radio (Handheld terminal for two way voice and text Message Comm.)

Features

- Support voice communication between terminal and any other telecom network PSTN & Mobile network
- Small message communication between terminals
- Handheld with Size: 155 x 200 x 80 mm
- Weight: 1.25 Kg

Specifications

- Antenna with 2.5 dBi gain over ±45 deg
- Terminal EIRP: 0.5 dBW at 1 W power amplifier
- Terminal G/T: -23.0 dB/OK
- Voice compression at 2.4 Kbps gives voice quality better than 3.5 MOS
- Transmission rate: 2.7 Kbps
- Convolution Rate ½ forward error correction
- BPSK/QPSK Modulation
- Band width required: 3.7 KHz
- Channel spacing: 10.0 KHz

Major Applications

- Voice communication
- Terminal to Terminal
- Terminal to PSTN/Mobile Network
- PSTN/Mobile Network to Terminal
- Small Text Message Communication
Two-Channel Digital Monopulse Tracking Receiver for Earth Station

The two-channel digital monopulse tracking receiver for earth station is a 70-MHz monopulse tracking receiver. The monopulse tracking receiver is one of the sub-systems of monopulse antenna tracking system in large earth stations. It generates DC error signals proportional to antenna off-pointing by processing the input IF signals in digital domain. These output error signals are used to drive the antenna in appropriate direction to correct the off-pointing error.

Applications
- GEO Satellite Earth Station Antenna Tracking
- LEO Satellite Earth Station Antenna Tracking

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Salient Features

• Wide Tracking Range: 70 MHz ± 250 KHz
• Wide dynamic range: 80 dB
• Selectable loop BW: 300 Hz, 1 KHz and 3 KHz
• Low input C/No threshold: 36 dBHz
• Selectable Tracking Range: 50 KHz, 150 KHz & 250 KHz
• User friendly Monitoring & Control for Local and Remote operation
• Save/Recall configuration for different satellite
• DC Error signals output: Analog and Digital
• Low cost, flexible, easier production
• 19 inch rack mountable 3U chassis

Testing

• POC model has been tested using Stimulus Generator in laboratory
• Completed in-system-testing at MCF, Bhopal and successfully tracked various satellites

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs/industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
NavIC Messaging and Positioning Receiver

Introduction

NavIC Satellite Constellation have a wide coverage area up to 1500 km around the Indian main land. They are mainly designed for Regional Navigation Services. In addition to their primary functionality, they allow broadcasting of additional short messages. These messages can be related to alerts, forecast and directives on the occurrence of natural disasters like floods, earthquake, tsunami, cyclones, landslides etc. and dangers for the safety of life in areas with poor or no communication infrastructure. The NavIC Messaging Receiver is conceptualized and developed at Space Applications Centre (SAC), ISRO, Ahmedabad for reception and display of these messages. The receiver transmits raw data over Bluetooth link. An application running on a smart device like mobile phone or tablet having Bluetooth connectivity can decode and display the messages for users. This receiver is designed as battery operated low power device. This note describes hardware architecture and requirement for product.

Objective

SAC has developed working prototype hardware. Product can also be used by fishermen/ marine applications in deep sea. IP67 packaging is to be designed by vendor along with battery charging option. Vendor participation is invited for production of same hardware in large numbers.

Design

NavIC Messaging receiver has been designed to provide positioning along with messaging. NavIC module can be procured from ANTRIX Corporation Limited, Bengaluru, a commercial arm of ISRO. In addition to the NavIC chipset, it uses ATMega328P microcontroller and HC-05 Bluetooth(BT) module. The controller provides configuration for chipset and BT module. Microcontroller acts as an interface between chipset and BT. The TPS73633DBVT LDO converts 5V to 3.3V. It is designed to draw power from battery or power bank. The power consumption of the receiver is around 100mA @ 5V. The receiver can work for about 4 days using a 10000mAh power bank. The block diagram of NavIC messaging and positioning receiver is as shown in Figure-1. Currently all the data from NavIC receiver is passed over BT to mobile which is consuming more power in both receiver and mobile. The blocks in dotted section are getting implemented as future enhancement. The idea is to save power in both mobile and device. This will be achieved by filtering out the messages in microcontroller and pass only needed messages to the mobile application. Figure 2 shows actual photograph of NavIC messaging receiver. The current size of PCB is 41mm x 46mm. The size of PCB with enhance feature is 70mm x 50mm.
Above figure shows set up of receiver which has external antenna and it is drawing power from power bank. The receiver has been developed, tested, demonstrated and delivered to many users. An Android application is also developed to display the messages on Mobile phone / tablet. Messages broadcasted by INCOIS can be received using this application.

Vendor Responsibility

Interested vendor has to fabricate the receiver PCB and design packaging including all the three components. The package has to be IP 67 compliant. The option of using power bank or some rechargeable battery is left to vendor.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Radiosonde

PisharotySonde system is an indigenous GPS Sonde (Radiosonde) system developed by VSSC/ISRO using commercially off the shelf components (COTS) for high quality atmospheric parameter measurement.

The Sonde system consists of the balloon borne segment referred as PisharotySonde and the ground segment referred as PisharotySonde Ground Station. PisharotySonde uses sensors for measuring the atmospheric temperature & relative humidity and GPS receiver module for acquiring the wind parameters, altitude, date and time. Pressure information can be derived from the height and temperature information using software. Sensor and GPS data are processed and transmitted to ground station. PisharotySonde Ground Station consists of the Antenna Assembly & LNB, Receiver and Data Processing & Display unit. Sonde system incorporates the software for solar radiation correction on temperature measurement.

The Sonde system also generates the WMO specified ‘temp’ messages for reporting the data. This indigenous low cost system is compact and light weight (125 grams). PisharotySonde system is validated by comparison ascents with various internationally available Sonde systems and the performance is confirmed. The system performance is evaluated independently by IMD and cleared for meteorological applications. More than 12000 Sondes have been already realized by ISRO.

Fig. Sonde on ascent
Fig. Sonde Ground Station
The PisharotySonde System is used by scientists for boundary layer studies and upper atmospheric observations. PisharotySonde system is used by Space Physics Laboratory (SPL) VSSC, MET TERLS VSSC, MET/SHAR, SAC, NESAC, NRSC and various universities for atmospheric studies. Data from the System is used regularly to support ISRO’s satellite launches. The System is identified as part of network of weather stations for thunderstorm observation in SAARC countries. Huge market demand also exist in atmospheric measurements by IMD, defence and academic institutions.

Specifications of PisharotySonde System

A. Sonde
- **Frequency**: 400 to 406 MHz (user programmable)
- **Power**: 17 dBm (50 mW)
- **Size**: 12 cm x 11.5 cm x 9 cm
- **Weight**: 125 gm
- **Battery**: up to 4 hours operation

B. Ground Station Receiver
- **Frequency**: 400 to 406 MHz (user programmable)
- **Sensitivity**: -117 dBm @ 1x 10⁻³ BER
- **Connectivity**: Ethernet
- **Power Supply**: 220-230 V AC, 50 Hz
- **Battery Backup**: 6 Hours
- **Size**: 47.5 cm x 23.5 cm x 4.5 cm (19” rack mountable)

<table>
<thead>
<tr>
<th>Description</th>
<th>Range</th>
<th>Accuracy</th>
<th>Resolution</th>
<th>Response time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure*</td>
<td>0 to 1030 hPa</td>
<td>±1.4 hPa (>100hPa) ±0.5 hPa (≤100hPa)</td>
<td>0.01hPa</td>
<td>NA</td>
</tr>
<tr>
<td>Temperature</td>
<td>-90 to 60 °C</td>
<td>±1°C</td>
<td>0.1°C</td>
<td>1s</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>0 to 100%</td>
<td>±5 %</td>
<td>0.1%</td>
<td>5s</td>
</tr>
<tr>
<td>Velocity range</td>
<td>0 to 500 m/s</td>
<td>0.1 m/s</td>
<td>0.01 m/s</td>
<td>NA</td>
</tr>
</tbody>
</table>

*Pressure is derived from altitude

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Satellite Gateway Unit (SGU)

The Satellite Gateway Unit (SGU) is useful to interface two different types of network – LAN and synchronous serial communication over satellite. The SGU is a low cost solution to transport IP/Ethernet frame over satellite network. It supports both unicast and multicast mode of communication. It can handle satellite channel signaling and conferencing call signalling that is useful in many SATCOM applications. All commercially available gadgets for packet based data communication like – VoIP, Video phone etc., are having LAN interface, to introduce those equipment into satellite network, SGU required that efficiently converts the IP data format into a synchronous HDCL format and vice versa. It is having proper routing/filtering mechanism to restrict unwanted traffic flows into the satellite link.

Satellite Gateway unit converts data between RS-422 to Ethernet. The unit is designed to work with internal clock or external clock selectable via jumper selection. The unit consists of total 8 communication channels and 1 control channel. The control channel is used to individually reset the communication channel via Ethernet port or via RS 485 port.

Applications area

• MSS services Hub base band systems as a gateway between synchronous serial interface of satellite systems and IP based hub baseband systems
• VOIP phone over satellite network

Specifications:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Communications Channels</td>
<td>8, can be configured independently</td>
</tr>
<tr>
<td>No. of M&C port/channel</td>
<td>1, can be configured independently</td>
</tr>
<tr>
<td>No of Processors per channels/m&c</td>
<td>1, RABBIT 6710 (total 9 processors)</td>
</tr>
<tr>
<td>Ethernet ports at Front panel per channel</td>
<td>1, 10/100 Ethernet RJ45 with Link And Activity Indicator</td>
</tr>
<tr>
<td>Ethernet Protocols supported</td>
<td>TCP, IP, UDP, RTP, HTTP</td>
</tr>
<tr>
<td>Communication Interface</td>
<td>RS422 synchronous (Tx data, Tx Clock, Rx Data, Rx clock)</td>
</tr>
<tr>
<td>Input Data Rate</td>
<td>2.4 Kbps to 384Kbps or higher</td>
</tr>
<tr>
<td>Clock selection</td>
<td>Internal, External, Selectable</td>
</tr>
<tr>
<td>Communication interface protocols</td>
<td>HDLC, Bi-sync, selectable</td>
</tr>
<tr>
<td>Specification</td>
<td>Details</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Communication Interface Connectors Back panel</td>
<td>9 PIN D type –male per channel</td>
</tr>
<tr>
<td>Communication LEDS</td>
<td>3 nos (RXD, TXD, link) per channel Front Panel</td>
</tr>
<tr>
<td>Operating System</td>
<td>Rabbit Bios</td>
</tr>
<tr>
<td>M&C interface</td>
<td>RS485 and RS232, selectable</td>
</tr>
<tr>
<td>M&C Interface connectors- Back Panel</td>
<td>9 PIN D type -female</td>
</tr>
<tr>
<td>M&C LEDS- Front Plate</td>
<td>3 nos. (RXD, TXD& link)</td>
</tr>
<tr>
<td>Push type master reset switch</td>
<td>On Front Panel</td>
</tr>
<tr>
<td>Enclosure</td>
<td>Standard 19”, standard 1U size,</td>
</tr>
<tr>
<td>Rack Mountable Cooling Fan</td>
<td>2, one as inlet and second as outlet</td>
</tr>
<tr>
<td>Power supply with EMI/RFI filter</td>
<td>230VAC with standard 3 pin Connector on Rear panel with Power supply cable</td>
</tr>
<tr>
<td>Power on/off switch – front panel</td>
<td>Yes</td>
</tr>
<tr>
<td>Power indicator-front panel</td>
<td>Yes</td>
</tr>
<tr>
<td>Temperature range</td>
<td>0 to +50 deg C</td>
</tr>
<tr>
<td>Humidity</td>
<td>5% to 95%, non-condensing</td>
</tr>
</tbody>
</table>

SGU is being used as a part of operational GSAT-6 MSS services Hub base band system for portable multimedia services and satellite Mobile Radio services (two way voice communication) at DES and at AES.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)

Email: contact-nsil@isro.gov.in
Low Cost Multi Standard Satellite Receiver (Data Dth) Technology

Space Applications Centre (SAC) has developed a low cost satellite receiver by Interfacing a USB TV tuner and Raspberry pi supporting multiple digital TV standards such as DVB-C/T/S/S2/S2x with tuning range from 950-2150 MHz at 1-45 Msps symbol rate for DVB-S/S2 standard and is successfully tested with GSAT-19 satellite link for the reception of Audio, video and data simultaneously for different symbol rates. In-house developed Akashganga application (A data repository application for admin and client side) is successfully deployed and tested on developed low cost receiver. The developed system can serve as an improvement for existing DTH set top box with data port at low cost.

Specifications

- A common power supply has been designed for the integrated module working at standard 230V AC for easy operation. Earlier design required separate power supplies for both Tuner and Raspberry Pi.
- Receiver supports multiple standards such as DVB-C/T/S/S2/S2x with tuning range from 950-2150 MHz at 1-45 Msps symbol rate for DVB-S/S2.
- Receiver works on Linux based Operating System (Raspbian) which offers added security aspect as compared to windows.
- Single line terminal commands to scan, tune and lock the receiver.
- Receiver is IPTV supportable.
- Wi-Fi functionality in receiver allows user to connect it via mobile/Tablet and access
information/data remotely.

- Standard F-Type(Female) RF/LNB input connector.
- Lock state and power indicator LED is provided.
- Small size and low cost.

Future developments

- System modification in progress to make it DVB-S2X reception compatible too which will further enhance its performance.
- To make it more compact and portable i.e. battery operated.

Program Linkage/Application Areas

- ISRO’s Tele-Education broadcasting program and Disaster Warning System.
- Can be deployed at information Kiosks at remote locations where terrestrial network is not available.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in

Reception of High definition Audio video and data simultaneously on the developed receiver
Space Applications Centre (SAC) has developed Pseudolite based navigation system (PBNS) which is a standalone ground-based navigation system and provides an alternate means for navigation without using any Global Navigation Satellite System (GNSS). PBNS is a kind of NavIC system on ground with coverage up to 10 km range. Pseudolite Based Navigation System has two major segments which includes Ground Segment and User Segment. Ground segment consists of 10 pseudolite transceivers which generate BPSK modulated navigation signals and transmits them at S-band frequency in pulse-CDMA mode. User receiver which is on-board an aircraft receives signals from ground based transmitters and processes them to compute user position after time synchronization.

Application Areas

The developed system will be helpful in minimizing the impact of the degradation of the GNSS services when used with in combination with GNSS as well. PBNS is also expected to support the positioning services for key operational capabilities for aircraft landing while maintaining full system capacity and also will support GAGAN for Cat III precise landing in future. PBNS will also be useful for navigation of unmanned aerial vehicles in both civil and strategic domains and interplanetary missions such as navigation on Mars as well.

Such a standalone system will also be worthy in scenarios where:

- GNSS is not available
- GNSS is compromised/denied
- GNSS is not feasible to be use
Specifications:

- PBNS is a standalone system which works without any GNSS.
- PBNS works with low-cost pseudolite transceivers and do not use atomic clocks.
- PBNS is a passive ranging self-synchronized system.
- PBNS uses S band ISM license free spectrum.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Frequency</td>
<td>MHz</td>
<td>2414.28</td>
</tr>
<tr>
<td>EIRP</td>
<td>dBW</td>
<td>6 (maximum)</td>
</tr>
<tr>
<td>Transmit Mode</td>
<td>%</td>
<td>Pulsed</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>%</td>
<td>10</td>
</tr>
</tbody>
</table>

Pseudolite System Parameters

![Concept of Pseudolite-Based Navigation System](image)

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Ferrite based Wave guide Circulators and Isolators

Space Applications Centre (SAC) has developed Ferrite based high power waveguide circulators at Ku band and Ka band and low power isolators at Ka band have been successfully qualified for space use.

A circulator is an important non-reciprocal device which has wide applications in conventional communication and radar systems both as a duplexer and an isolator. It is used to provide perfect match conditions to devices connected at its input and output by isolating them.

Applications area

Industries involved in the development of high power transmitters and low power receivers for space based and terrestrial applications at these frequencies are the potential users.
Specifications:

- Y – junction ferrite waveguide circulator
- State of the art design with similar performance
- Thermally stable performance over -10 to 75 °C due to excellent thermal design for handling high power
- Wide band design to cover entire allocated frequency bands at Ku and Ka band

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ku Band High Power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ka Band High Power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ka Band Low Power</td>
</tr>
<tr>
<td>1</td>
<td>Frequency Range (GHz)</td>
<td>10.7-12.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.7-20.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.5-30.5</td>
</tr>
<tr>
<td>2</td>
<td>Insertion Loss (dB)</td>
<td>< 0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 0.2</td>
</tr>
<tr>
<td>3</td>
<td>Return Loss (dB)</td>
<td>> 21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 20</td>
</tr>
<tr>
<td>4</td>
<td>Isolation (dB)</td>
<td>> 21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 20</td>
</tr>
<tr>
<td>5</td>
<td>Power Handling (W)</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Average (Forward+Reverse)</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td></td>
<td>520</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Power</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Specifications:
- Very fast switching speed of under 2.5 us
- Isolation of 60dB between transmitter and receiver during transmit window.
- Transmit loss of 0.25dB and receive loss of 0.85dB over 600 MHz at operating temperature range
- Capable of high RF power handing. Tested for power handling and multipaction up to 500W average and 6kW peak RF power at thermo-vacuum conditions.
- In-built driver for generating magnetic flux based on external TTL input.
- The unit has undergone thorough space qualification including
 - S-parameter characterization from -150C to 550C at vacuum
 - Qualification level vibration & mechanical shock.
 - Multipactor & vacuum power handling testing at 6kW peak and 440W average power respectively
Applications

The Circulator-Switch Assembly is the crucial front-end element of high power microwave remote sensing payloads where a common antenna is shared by the high power transmitter and the low power receiver. It protects the receiver by providing more than 60dB of isolation during the transmit window. With switching speed as low as 2.5us, it is also the duplexing mechanism between transmit and receive signals of the payload. The CSA is subject to the full payload output power and hence tested up to 6kW of peak power and 440W average power. Typical transmit loss of the unit is better than 0.25 and receive path loss better than 0.85dB over 600 MHz bandwidth at 9.6 GHz center frequency.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (9.3 – 9.9 GHz)</td>
<td></td>
</tr>
<tr>
<td>Transmit path Loss (over 600 MHz) (from -15°C to 55°C)</td>
<td>0.25 dB (max)</td>
</tr>
<tr>
<td>Receive path Loss (over 600 MHz) (from -15°C to 55°C)</td>
<td>0.85 dB (max)</td>
</tr>
<tr>
<td>Return Loss (600 MHz)</td>
<td>16 dB (min)</td>
</tr>
<tr>
<td>Peak Power Handling</td>
<td>2 KW</td>
</tr>
<tr>
<td>Average Power Handling</td>
<td>440W</td>
</tr>
<tr>
<td>Full power operating temperature (base-plate)</td>
<td>-10°C to 50°C</td>
</tr>
<tr>
<td>Switching Speed</td>
<td>2.5us (max)</td>
</tr>
<tr>
<td>Interface</td>
<td>WR90 waveguide</td>
</tr>
<tr>
<td>Mass</td>
<td>0.7 kg (max)</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
SCPC Modem IP Core

SAC has designed and developed a SCPC modem IP core performs modulation & demodulation for enabling two communications through satellite network. Modem takes binary data from user, performs scrambling, FEC encoding & pulse shaping operations and provides modulated complex baseband samples for DAC. Similarly, it demodulates the modulated signal & performs FEC decoding & descrambling operations and provides binary data at output. SCPC modem has serial synchronous data interface with HDLC encapsulation option for packet type data.

Applications
- In SATCOM Hub stations & terminals for enabling two-way point to point communication in continuous mode
- Two-way Audio/video & data communication over satellite network

Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation</td>
<td>BPSK/QPSK</td>
</tr>
<tr>
<td>Data Rate</td>
<td>32Kbps-2Mbps</td>
</tr>
<tr>
<td>Data Interfaces</td>
<td>Serial Synchronous</td>
</tr>
<tr>
<td>Forward Error Correction (FEC)</td>
<td>Conv. (K=7, R= ½, ¾) + Reed Solomon (short) - optional</td>
</tr>
<tr>
<td>Scrambler</td>
<td>V.35 (IEEE-308)</td>
</tr>
<tr>
<td>Phase Ambiguity</td>
<td>Differential Encoding/Decoding</td>
</tr>
<tr>
<td>Acquisition Range</td>
<td>< ±Symbol Rate/8</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>HDLC / Custom (details to be provided)</td>
</tr>
<tr>
<td>Required Eb/No for BER of 1x10^-6</td>
<td>6.0 dB (including implementation margin)</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>30 dB</td>
</tr>
<tr>
<td>ADC/DAC interface</td>
<td>12 bit I/Q Samples</td>
</tr>
</tbody>
</table>

Deliverables
- Bit file/Encrypted Netlist of the HDL IP is provided.
- One time(limited) HDL IP porting support is provided

Present Platform Details

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPGA</td>
<td>Xilinx Artix-7</td>
</tr>
<tr>
<td>RF Transceiver</td>
<td>AD9364/AD9361</td>
</tr>
<tr>
<td>Tx/Rx Frequency</td>
<td>L-Band</td>
</tr>
<tr>
<td>Data Interface</td>
<td>Serial/Ethernet</td>
</tr>
</tbody>
</table>

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre of ISRO has developed a low noise amplifier designed at V band. It operates at 50 – 60GHz and gives a gain of 7-10dB. The typical noise figure is less than 5dB. It is also a medium power amplifier with 14 dB output power at 1dB gain compression. The amplifier has waveguide WR-15 interface at the input and output.

Typical Applications

- EW Receivers
- Weather & Military ultra wideband radar applications
- Ultra wideband communication networks

Salient Features

- **Frequency**: 50-60GHz
- **Noise Figure**: 5 dB
- **Gain**: 8.5dB (Higher Gain option available)
- **Output Power at (@P1dB)**: 14dBm
- **DC power consumption**: 80mA, 3V
- **Input / Output**: Waveguide WR15

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>Gain (dB)</th>
<th>Noise Figure (dB)</th>
<th>P1dB (dBm)</th>
<th>DC Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-60</td>
<td>8.5dB±1.5dB</td>
<td>5</td>
<td>14</td>
<td>3V, 80mA</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
21 NA Pressure Transducer

Indian Space Research Organization (ISRO) at its Liquid Propulsion Systems Centre has developed a novel 21 NA Pressure Transducer, which will find wide industrial and commercial applications.

Principle of Operation

21NA Pressure transducers which is space qualified has outstanding features such as light weight, high accuracy and ruggedness. These transducers are intended for absolute pressure sensing. The active element is a stainless steel membrane which senses the pressure to be measured. The membrane transmits a force in proportion to the pressure, to an isostatic beam on which four active strain gauges are bonded in a wheat stone bridge circuit. These transducers are totally enclosed, adequately temperature compensated and are designed to operate even under adverse environmental conditions. They are hermetically sealed and suitable for high humidity environment as well. Any failure of the sensing element will be contained within the sensor and no catastrophic damage outside is ensured. These transducers have a heritage of long term use in satellites as well. These sensors have 30 years heritage in ISRO launch vehicle programmes. These transducers are mainly meant for application in the areas of aerospace, process industries, air and gas compressors, oil and gas, wind tunnel studies etc.

Advantages & Salient Features

• Compact & Light weight
• Hermetically Sealed
• Can withstand Shock 50grms
• Vibration resistance upto 30grms
• High Dynamic response
• Compatible with corrosive fluid environments.

Application

• Aerospace
• Defense
• Process Industries
• Atomic energy
• Air and Gas Compressors
• High Dynamic response
• Compatible with corrosive fluid environments.
• Oil and gas industry.
• Automobiles Wind
• Tunnel Studies etc.
• Oceanography
Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring Ranges (Bar)</td>
<td>0-3, 0-5, 0-7, 0-10, 0-15, 0-20, 0-30, 0-50, 0-70, 0-100, 0-200, 0-300 and 0-330 Bar.</td>
</tr>
<tr>
<td>Nominal Excitation</td>
<td>10 V DC ± 5 mV</td>
</tr>
<tr>
<td>Safe overload</td>
<td>For 0-3 to 0-20 bar: 2X Nominal pressure</td>
</tr>
<tr>
<td></td>
<td>For 0-30 bar: 40 bar</td>
</tr>
<tr>
<td></td>
<td>For 0-50 to 0-200 bar: 2X Nominal pressure</td>
</tr>
<tr>
<td></td>
<td>For 0-300 to 0-330 bar: 500 bar</td>
</tr>
<tr>
<td>Full Scale Output (FSO)</td>
<td>20 to 21 mV</td>
</tr>
<tr>
<td>For 10 Volts Excitation</td>
<td></td>
</tr>
<tr>
<td>Non Linearity + Hysteresis</td>
<td>For 0-30 to 0-300 Bar: ≤ 0.7% FSO</td>
</tr>
<tr>
<td></td>
<td>For 0-330 Bar: ≤ 0.85% FSO</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>≤ 0.5% FSO</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>2.0.1 mV/V</td>
</tr>
<tr>
<td>Zero &Nominal point drift in temperature</td>
<td>≤ 2 X 10^-4 / FSO/°C</td>
</tr>
<tr>
<td>Noise Due to Vibration</td>
<td>≤ 1% FSO</td>
</tr>
<tr>
<td>Mass</td>
<td>≤ 100 grams</td>
</tr>
<tr>
<td>Electrical interface</td>
<td>Multi-pin hermetically sealed connector</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Differential Pressure Transducer (DPT)

Indian Space Research Organization (ISRO) at its Liquid Propulsion Systems Centre has developed a novel Differential Pressure Transducer (DPT), which will find wide industrial and commercial applications.

Principle of Operation

A DPT is used where the difference in pressures at two points are to be measured. The forces developed due to these pressures (say P1 and P2) act on a balanced beam called sensing element. Four resistance foil strain gauges are bonded on this sensing element beam which deforms proportionately to the difference between P1 and P2. The electrical output signal is positive when P1 is greater than P2 and vice versa. A mechanical stopper limits the deflection of sensing beam within the specified limits.

The DPT can be used for liquid medium or gaseous medium or even a combination of both. They are hermetically sealed and suitable for high humidity environment as well. Any failure of the sensing element will be contained within the sensor and no catastrophic damage is caused to the system.

Advantages & Salient Features

- Rugged
- Hermetically Sealed
- Vibration resistance
- Compatible with corrosive fluid environments.

Application

- Aerospace
- Atomic energy
- Process Industries
- Air and Gas Compressors
- Oil and gas industry's
Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential pressure range</td>
<td>± 3, ± 5, ± 7, ± 10, ± 20</td>
</tr>
<tr>
<td>Line pressure</td>
<td>65 bar Safe</td>
</tr>
<tr>
<td>overload</td>
<td>75 bar</td>
</tr>
<tr>
<td>Excitation</td>
<td>10 V ± 5 mV</td>
</tr>
<tr>
<td>Output</td>
<td>10 mV ± 5 mV</td>
</tr>
<tr>
<td>Non Linearity + Hysteresis</td>
<td>≤0.5% F.S.O</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>≤0.3% F.S.O</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>± 1 mV/V ± 0.1</td>
</tr>
<tr>
<td>Zero & F.S.O drift in temperature</td>
<td>± 3 x 10⁻⁴/F.S.O/° C</td>
</tr>
<tr>
<td>Noise due to vibration</td>
<td>≤1% F.S.O Mass ≤950 gms</td>
</tr>
<tr>
<td>Maximum current</td>
<td>28 mA @ 10 V.D.C</td>
</tr>
<tr>
<td>Wetted parts</td>
<td>Stainless steel, 316L/304L</td>
</tr>
<tr>
<td>Electrical interface</td>
<td>Multi-pin hermetically sealed electrical connector</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
HLP-85 Temperature Sensor

Indian Space Research Organisation (ISRO) at its Liquid Propulsion Systems Centre has developed a novel HLP-85 Temperature sensor, which will find wide industrial and commercial applications.

Principle of Operation

Accurate and reliable measurement of temperatures in high pressure gaseous and liquid media requires dedicated and specialized thermocouple probes. The Thermocouple probe HLP-85, developed at ISRO, is qualified for measuring temperature under severe environmental conditions posed by the propellants high pressure and corrosive nature. The sensor has a heritage of 25 years in ISRO launch vehicle programmes.

The sensor uses basic elements like Chromel / Alumel with sheath and thermo well materials like 5.5 AISI 304/316/Inconel. The sensor uses unique construction techniques to obtain noise immunity and high response.

Advantages & Salient Features

- Fast response
- Wide Temperature ranges
- Less Weight
- Shock & Vibration resistance
- Highly linear

Application

- Space application
- Process Industries
- R&D Laboratories
- Defence Application
- Atomic
- Commercial Application
- Oil & Gas Industries
Specifications

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>-196 °C to +250 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermo Couple</td>
<td>K Type (0.5 Φ) Chromel-Alumel</td>
</tr>
<tr>
<td>Junction</td>
<td>Ungrounded</td>
</tr>
<tr>
<td>Pressure (Max)</td>
<td>350 Bar</td>
</tr>
<tr>
<td>Time Constant</td>
<td>≤ 0.3 s</td>
</tr>
<tr>
<td>Material Of Sheath</td>
<td>AISI 304 L/Z2 CN 18-10 (SS)</td>
</tr>
<tr>
<td>Insulating Material</td>
<td>MgO</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>41µV/°C</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0 to 100 °C ±3 °C; 0 to -196 °C ±7 °C</td>
</tr>
<tr>
<td>Mass</td>
<td></td>
</tr>
<tr>
<td>Electrical interface</td>
<td>Multi pin hermetically sealed connector.</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
IDLV Pressure Transducer

Indian Space Research Organisation (ISRO) at its Liquid Propulsion Systems Centre has developed a novel IDLV Pressure Transducer, which will find wide industrial and commercial applications.

Principle of Operation

The IDLV stands for Integral diaphragm type pressure transducer, which is an absolute pressure sensor that is space qualified. The transducer has the unique characteristic like high accuracy output, rugged construction and hermetic sealing.

It has 5 fabricated parts and is especially suited for high volume production due to ease of fabrication and assembly. It has a machined diaphragm made of stainless steel for 0-30 bar to 0-500 bar pressure ranges. Four foil strain gauges are bonded on the diaphragm to measure the strain developed in it. The diaphragm is specially cryo treated to ensure high long term stability. In order to reduce power consumption 1000Ω strain gauges are selected.

Another advantage of this transducer is that it can be customized to operate in any range from 30 bar to 500 bar. Additionally, any damage to the sensing element will be contained within the sensor thus avoiding any sort of catastrophic damage in the system.

Advantages & Salient Features

- Any range from 30 to 500 bar can be custom designed and manufactured.
- Compatible with corrosive & Harsh fluid environments
- Fully Stainless Steel Constructed
- E.B Welded and hermetically sealed
- Low Cost
- High Accuracy
- Rugged
- Shock 50grms
- Vibration resistance upto 30grms
- High Dynamic response

Application

- Space
- Defense
- Oceanography
- Atomic energy
- Oil and gas industry
- Automobilen
- R & D laboratories
- Biomedical engineering
- Mining safety etc.,
- Process industries
Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range in bar</td>
<td>30, 50, 70, 100, 200, 300, 330 & 500 Bar (currently manufactured ranges).</td>
</tr>
<tr>
<td>Safe overload (Proof Pressure)</td>
<td>2 times operating pressure for all ranges</td>
</tr>
<tr>
<td>Secondary Containment Pressure</td>
<td>Upto 800 Bar</td>
</tr>
<tr>
<td>Nominal Excitation</td>
<td>10 V DC nominal</td>
</tr>
<tr>
<td>FSO for 10 V Excitation</td>
<td>20 mV + mV</td>
</tr>
<tr>
<td>Temperature drift of zero and FSO</td>
<td>$< \pm 2 \times 10^{-4} / \text{FSO}/^\circ\text{C}$</td>
</tr>
<tr>
<td>Non linearity + Hysteresis</td>
<td>$< \pm 0.5 % \text{FSO}$</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>$2 \pm 0.1 \text{mV}/\text{V}$</td>
</tr>
<tr>
<td>Dimension / Mass</td>
<td>$\Phi 25 \times 72 \text{ mm} / 105 \text{ gms.}$</td>
</tr>
<tr>
<td>Electrical interface</td>
<td>Multi-pin hermetically sealed connector</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
MEMS based Pressure Transducer

Indian Space Research Organisation (ISRO) at its Liquid Propulsion Systems Centre has developed a novel MEMS Pressure Transducer, which will find wide industrial and commercial applications.

Principle of Operation

MEMS Stands for Micro Electro Mechanical System. In the MEMS pressure transducer the Silicon technology integrates the mechanical sensing with the signal conditioning electronics making the sensor highly compact and equally accurate. In addition to its reduced weight the sensor requires only lesser power and offers high system reliability. These sensors are fabricated fully with stainless steel material and are hermitically sealed using EB welding process.

Advantages & Salient Features

• Low power
• High accuracy
• Miniature / Low cost
• Less Weight
• High output
• Extremely low hysteresis
• Shock and vibration resistant
• High dynamic response
• High long term stability
• Suitable for low pressure measurement with high accuracy

Application

• Suitable for control systems in all industries
• Automotive
• Defence
• Oceanography
• Atomic
• Vacuum pressure measurement
• Process and chemical Industries
• Automatic weather stations
• Space applications
Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Range</td>
<td>1 bar to 250 bar (Absolute)</td>
</tr>
<tr>
<td>Excitation</td>
<td>5 ±0.1 V DC</td>
</tr>
<tr>
<td>Output Span</td>
<td>4 ±0.1 V DC (Optional)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>3.9 to 4.1 V/bar (Optional)</td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>Non Linearity + Hysteresis</td>
<td>$< 0.3%$ FSO</td>
</tr>
<tr>
<td>Mass</td>
<td>75 gms</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Ø25 x 55 mm length max</td>
</tr>
<tr>
<td>Electrical interface</td>
<td>Multipin hermetically sealed connector.</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Indian Space Research Organisation (ISRO) at its Liquid Propulsion Systems Centre has developed a novel Temperature sensor, which will find wide industrial and commercial applications.

Principle of Operation

Accurate and reliable measurement of temperatures in high pressure gaseous and liquid media requires dedicated and specialized thermocouple probes. The PTS-84 an RTD type temperature sensor, developed at ISRO, is qualified for measuring temperature under severe environmental conditions posed by the propellants high pressure and corrosive nature.

The basic element used here is a wire wound platinum sensor which has 100Ω at 0 ºC and encapsulated with S.S AISI 304/316/Inconel material. The sensor uses unique construction techniques to achieve noise immunity and high response.

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range</td>
<td>-196ºC To 250 ºC</td>
</tr>
<tr>
<td>Time Constant</td>
<td>≤ 3.0 s</td>
</tr>
<tr>
<td>Material of Sheath</td>
<td>AISI 304L/Z2 CN 18-10 (S.S.)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.39 µV / ºC</td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>Resistance at 0ºC</td>
<td>100.0± 0.25 ohms</td>
</tr>
<tr>
<td>Mass</td>
<td>≤ 100 g</td>
</tr>
<tr>
<td>Max. Pressure</td>
<td>300 Bar.</td>
</tr>
<tr>
<td>Electrical interface</td>
<td>Multi-pin hermetically sealed connector.</td>
</tr>
</tbody>
</table>

Advantages & Salient Features

- Accurate
- Reliable Measurement
- Linear
- Rugged
- Less weight
- Can withstand high flow rate
- Stable

Application

- Space application
- Process Industries
- Atomic Purposes
- R&D Laboratories
- Defense Application
- Commercial Application
- Oil & Gas Industries
TCP-84 Temperature Sensor

Indian Space Research Organisation (ISRO) at its Liquid Propulsion Systems Centre has developed a novel TCP-84 Temperature sensor, which will find wide industrial and commercial applications.

Principle of Operation

Accurate and reliable measurement of temperatures in high pressure gaseous and liquid media requires dedicated and specialized thermocouple probes. The Thermocouple probe TCP-84, developed at ISRO, is qualified for measuring temperature under severe environmental conditions posed by the propellants high pressure and corrosive nature. The sensors have been tested for the temperature range of 0°C to 1100°C. The sensors have a heritage of 25 years in ISRO launch vehicle programmes.

The sensor uses basic elements like Chromel / Alumel with sheath and thermo well materials like S.S AISI 304/316/Inconel. The sensor uses unique construction techniques to obtain noise immunity and high response.

Advantages & Salient Features

- Fast response
- Wide Temperature ranges
- Less Weight
- Shock & Vibration resistant

Application

- Space application
- Process Industries
- R&D Laboratories
- Defense Application
- Commercial Application
- Oil & Gas Industries

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range</td>
<td>0 To 800°C</td>
</tr>
<tr>
<td>Thermo Couple</td>
<td>K Type (Chromel-Alumel)</td>
</tr>
<tr>
<td>Junction</td>
<td>Ungrounded (Φ 1.0)</td>
</tr>
<tr>
<td>Pressure (Max)</td>
<td>350 Bar</td>
</tr>
<tr>
<td>Time Constant</td>
<td>≤ 0.3 s</td>
</tr>
<tr>
<td>Material Of Sheath</td>
<td>AISI 304 L or Equivalent</td>
</tr>
<tr>
<td>Insulating Material</td>
<td>MgO</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>41µV/°C</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0 to 400 °C ± 3 °C</td>
</tr>
<tr>
<td></td>
<td>> 400 °C ± 0.75% of Reading</td>
</tr>
<tr>
<td>Mass</td>
<td></td>
</tr>
<tr>
<td>Electrical interface</td>
<td>Multi-pin hermetically sealed connector.</td>
</tr>
</tbody>
</table>
Indian Space Research Organisation (ISRO) at its Liquid Propulsion Systems Centre has developed a novel level sensor, which will find wide industrial and commercial applications.

Principle of Operation

USLS does the function of sensing the presence of liquid medium between its sensing gap. The Standard sensor is typically integrated with the sensing element called the “SENSOR HEAD” and electrically connected to a 5 pin Lemo electrical connector. The sensor is constructed using AISI 304L stainless steel.

One Ceramic disc the “TRANSMIT TRANSDUCER” is used to convert electrical signal to an ultrasonic signal which is then transmitted across the sensing gap. The other Disk “RECEIVE TRANSDUCER” receives the ultrasonic signal and converts it into an electrical signal. The attenuation of ultrasound signals between the transmitter and receiver varies with the medium.

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immersion Length</td>
<td>125mm (Approx)</td>
</tr>
<tr>
<td>Level detection</td>
<td>75 mm below mounting flange</td>
</tr>
<tr>
<td>Working liquids</td>
<td>N₂, O₂, UDMH & water</td>
</tr>
<tr>
<td>Fluids pressure</td>
<td>10 bar (Abs)</td>
</tr>
<tr>
<td>Test pressure</td>
<td>15 bar (Abs)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0 to 70°C</td>
</tr>
<tr>
<td>Material</td>
<td>SS 304 L</td>
</tr>
<tr>
<td>Vibration Resistant</td>
<td>13.5g, 20-2000 Hz Random</td>
</tr>
<tr>
<td>Electrical interface</td>
<td>Multipin electrical connector</td>
</tr>
</tbody>
</table>

The attenuation is high for air and low for liquids. This change in signal level enables the electric control unit (separate unit) to sense the presence or absence of liquid.

Advantages & Salient Features

- Miniature/low cost
- Less Weight
- High output
- Low hysteresis
- Shock and vibration resistant
- High dynamic response

Application

- Automotive
- Defense
- Oceanography
- Vacuum pressure measurement
- Process and chemical Industries
- Automatic weather stations
- Space applications

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre (ISRO) has developed a burst demodulator which performs the demodulation of PSK modulated signal being transmitted in burst mode. The demodulator expects the quantized, complex baseband samples from analog to digital convertor and recovers timing, frequency and phase of the complex baseband symbols. In addition, core handles the Viterbi decoding, Data De-scrambling & HDLC decoding for data. The core can forward the data on UART/Ethernet interface.

Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation</td>
<td>BPSK/QPSK</td>
</tr>
<tr>
<td>Data Rate</td>
<td>1.2 Kbps/2.4 Kbps</td>
</tr>
<tr>
<td>Payload Length</td>
<td>Configurable (10-100 bytes)</td>
</tr>
<tr>
<td>Forward Error Correction (FEC)</td>
<td>Convolutional Rate Half ½, K=7</td>
</tr>
<tr>
<td>Scrambler</td>
<td>1+x+x₁⁵</td>
</tr>
<tr>
<td>Data Integrity Check</td>
<td>HDLC (CRC-16)</td>
</tr>
<tr>
<td>Acquisition Range</td>
<td>Less than ±4*Symbol Rate</td>
</tr>
<tr>
<td>Eb/N₀</td>
<td>7 dB & above</td>
</tr>
<tr>
<td>Packet Error Rate (PER)</td>
<td>1% or less at 7 dB</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>10 dB</td>
</tr>
<tr>
<td>Input Format</td>
<td>12 bit I/Q Samples</td>
</tr>
<tr>
<td>Data Output</td>
<td>UART / Ethernet</td>
</tr>
</tbody>
</table>

Deliverables

- Bit file/Encrypted Netlist of the HDL IP is provided.
- One time (limited) HDL IP porting support is provided

Present Platform Details

- **FPGA**: Zynq7035(SDR)
- **RF Transceiver**: AD9364/AD9361
- **Receive Frequency**: L-Band
- **Output Interface**: UART/Ethernet

Interested vendors in India with adequate experience and manufacturing facilities can contact us on:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Solid State Recorder (SSR)

SAC has designed and developed a Solid State Recorder (SSR) based on non-volatile flash memory for applications requiring high speed large volume data recording. Industry standard NAND Flash has been used to take advantage of their ever increasing density and cost reduction as technology advances. These SSRs make ideal data capture media for airborne imaging sensors as well as other applications requiring high data ingest rate real-time capacity including ground testing and archival of data. The architecture has been specially optimized for imaging sensor applications and mass, volume and power parameters. Various input connectivity options allow these recorders to be readily applied with most data heavy sources.

Technical Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustained Input Data Rate</td>
<td>1.0 Giga Baud</td>
</tr>
<tr>
<td>Storage Capacity</td>
<td>4 Tb</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-20°C to +75°C</td>
</tr>
<tr>
<td>Storage Medium</td>
<td>NAND Flash</td>
</tr>
<tr>
<td>Mass</td>
<td>< 0.75 Kg</td>
</tr>
<tr>
<td>Power</td>
<td>< 8 Watts</td>
</tr>
<tr>
<td>Data Retrieval</td>
<td>USB 2.0</td>
</tr>
<tr>
<td>Input Interface</td>
<td>SERDES / LVDS Serial / LVDS Parallel / RS422 serial and RS232 serial</td>
</tr>
<tr>
<td>Operational Voltage</td>
<td>5-12 Volts (non-isolated) 9-36/18-72 Volts (Isolated)</td>
</tr>
<tr>
<td>Package Size</td>
<td>220 mm x 50 mm x 25 mm</td>
</tr>
<tr>
<td>Operator Interface</td>
<td>Custom Utility (Windows)</td>
</tr>
</tbody>
</table>

Features

- Real-time recording
- ONFI Flash device based storage
- Scalable and Flexible Design
- Optimized for mass and power
- Host-based file management

Applications

- Imaging Data Recording
- High Speed Sensor Data Acquisition
- Airborne Applications
- Ground Testing and Data Archival

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre of ISRO has developed a transmit receive (TR) module which is very useful as both transmit and receive chains are accommodated in a single small housing for achieving higher gain. This MMIC based TR module is flown in Radar Imaging Satellite (RISAT-1). It is a building block for radars and finds its applications in weather radar, ground based radar etc. Each TR Module consists of a low power TR switch to select either of the transmit or receive paths. It has a weight of 420 gms.

ISRO offers to license this technology of Transmit Receive Module to industries with adequate experience and facilities. Enterprises interested in obtaining knowhow may write giving details of their present activities, infrastructure and facilities to us.

Transmit-Receive Module

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>5350 GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>225 MHz</td>
</tr>
<tr>
<td>Phase Control</td>
<td>6 bits, 360 deg range/ 5.625 deg step</td>
</tr>
<tr>
<td>Gain Control</td>
<td>6 bits, 31.5 dB range/ 0.5 dB step</td>
</tr>
<tr>
<td>Coupling of Coupler</td>
<td>20 dB</td>
</tr>
</tbody>
</table>

Transmit Path Characteristics

- Input Power: -10 dBm
- Peak Output Power: 10W
- Transmit Pulse Duration: 20μs, 10% duty

Receive Path Characteristics

- Noise Figure: 4 dB
- Gain @ 0 dB Attenuation: 30 dB
- SPST Isolation: 35 dB

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Power Conditioning and Processing Unit

SAC has developed a Power Conditioning and Processing Unit (PCPU) for use in microwave remote sensing missions. PCPU is a very complex multi output dc - dc converter that delivers around 100W of peak power and around 10W of average power. Here, Planar magnetics is used for the first time which was realized using 18 and 16 layer PCBs.

Technological Features

- Thick film technology
- SMT technology
- Planar Magnetics
- Magnesium alloy for weight reduction
- Hybrid Micro- Circuits

Salient Features of PCPU

- Powers a pair of V&H TR Modules and a TRC unit
- 10 outputs: 8 pulsed+ 2 continuous
- 59W pulse output power
- 9.1W average output power
- High BW pulse modulators for fast rise & fall times on pulsed outputs
- In-built EMI filter isolates the satellite bus from the pulsed load transients

ISRO offers to license this technology of PCPU to industries with adequate experience and facilities. Enterprises interested in obtaining knowhow may write giving details of their present activities, infrastructure and facilities to us.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre of ISRO has developed an integrated 6-bit GaAs MMIC digital phase shifter featuring two MMIC dies catering to 1024 ps delay requirement. It operates at 1.25 GHz with 250 MHz bandwidth, providing 1024ps of delay coverage, with a resolution of 16 ps. It features very low RMS delay error of 8 ps. This TTD Phase shifter requires an external driver circuit and works on negative control logic of 0/-5V. It is internally matched to 50 ohms and is ideal for integration into Multi chip Modules (MCMs) due to its small size.

Typical Appfications
- EW Receivers
- Weather & Military ultra wideband Radars
- Beam Forming Modules

Salient Features
- 6 bit TTD-Phase Shifter
- Wide Dynamic range: 1024 ps
- Fine Resolution: 16 ps
- Novel Topology of self switched band pass network for 256 ps delay bit
- Novel topology of compensated network for 512 ps delay bit

<table>
<thead>
<tr>
<th>Frequency (Ghz)</th>
<th>Max. Insertion Loss (dB)</th>
<th>Delay Range (ps)</th>
<th>I/O Return Loss Max. (dB)</th>
<th>Max. RMS Error (ps)</th>
<th>Control Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25 ± 0.125</td>
<td>15</td>
<td>16 to 1024</td>
<td>12</td>
<td>8</td>
<td>0/-5V</td>
</tr>
</tbody>
</table>

ISRO offers to license this technology of L band true time delay phase shifter to industries with adequate experience and facilities. Enterprises interested in obtaining knowhow may write giving details of their present activities, infrastructure and facilities to us.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Ka Band 5W Solid State Power Amplifier

5 watt Ka-Band (29.6-30.2 GHz) SSPA was successfully designed, developed and integrated in the ground terminal of GSAT-4 project. The technology has also been transferred to the Industry (ASTRA MW).

Salient Features of SSPA

The MMIC based SSPA at Ka-Band (30 GHz) with 5 Watt of output power is first time developed in SAC, India. It makes use of indigenously developed waveguide based extremely low loss symmetric 3 dB Quadrature coupler to derive the 5 Watt of output power.

Major Specifications:
Frequency Range: 29.6 - 30.2 GHz
Output Power: 37 dBm
Small Signal Gain: 40 dB
Gain Flatness: ± 0.6
Return loss: > 17 dB

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
The GEOSAT program of ISRO is conceived to address the nation’s growing need for satellite based connectivity for broadcast, communications and networking applications. The growing demand for bandwidth to support such applications is calling for a large number of transponders to be deployed in the coming years.

Solid State Power Amplifiers (SSPAs) are used extensively in such transponders. Space Applications Centre (SAC), ISRO has developed and qualified a design for normal C band operation, tailored to meet this requirement on board GEOSAT satellites. ISRO invites interested and capable parties to whom this technology can be transferred. Under this arrangement, qualified vendors will be enabled to undertake fabrication, testing, optimization and delivery of the RF assemblies required in these SSPAs. The SSPA consists of RF Assembly and an Electronic Power Conditioner [EPC] Assembly.

Attenuators
The SSPA has two PIN attenuator circuits. One is a two section commandable attenuator providing up to 24 dB of attenuation for on-board gain control. The second attenuator is used for compensation of gain variation against temperature. Each attenuator section employs 3 dB large couplers with two PIN diodes.

The commandable attenuator is externally controlled through serial commands. These commands are processed within the SSPA using a decoder comprising integrated circuits CD4050, CD40174, CD4015, CD40106 and CD4051. This decoder, along with biasing arrangements for all devices, is implemented on a PCB which is housed in a separate section of the RF assembly. The temperature compensation network is also included on this card.

RF Amplifier
The RF Assembly consists of low, medium and high power amplifier stages along with two attenuators. The nominal RF output power of the SSPA is 15 Watts (41.8 dBm) in the specified operating frequency band. Nine amplifier stages provide the required 86 dB gain. The small signal stages employ five CFY25-20 devices in a 3 + 2 chain. These small signal stages will drive the medium power stages based on MGF2407 & MGF2430. All these stages are housed in one section of the RF package. The output of this section (i.e. small and medium power stages) is fed to the Power Amplifier section of the same housing, via co-axial cable. The Power Section houses the MGF38V and MGF44V devices, the latter being a 25 Watt output device. The space between the low power and high power sections is occupied by interconnections and harnessing.

Technology Transfer from ISRO
ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs/industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
C Band Active Radar Calibrator

SAC has developed a C band active radar calibrator for calibration of microwave imaging sensors. It is a ground based equipment developed indigenously.

Features:

- Can calibrate individual Like and Cross-Polarised C-band SAR Channels; W, HH, VH, HV & Circular Polarisation using two ARC Rxs.
- Dual Polarized broadband (7%) multilayer microstrip antenna of 23 dB gain and cross-polarization better than -40 dB.
- Antenna protected by radome using inverted patch.
- Receiver Input Signal range: -25 to -60 dBm, Max Tx signal: +20 dBm.
- Each Channel contains Selectable Gain with Digital control (Step: 1dB) & 6 bit Digital Phase Control in steps of 5.625 deg.

ISRO offers to license this technology of Active Radar Calibrator to industries with adequate experience and facilities. Enterprises interested in obtaining knowhow may write giving details of their present activities, infrastructure and facilities to us.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs/industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Indian Space Research Organisation (ISRO) at its Vikram Sarabhai Space Centre (VSSC) has developed a Miniaturised, High Frequency, Surface Mount Technology (SMT) based DC DC Converter. These converters are designed for aerospace applications and can also be used for commercial/Industrial applications.

SMT DC DC converters have usage heritage in all ISRO’s launch vehicles programme and orbital platform experiments. These DC-DC converter modules can meet the environments of aerospace applications and can withstand Vibration test, Shock test, Humidity test, Temperature soak tests. The converters are based on fixed frequency single ended forward topology with magnetic feedback and have an internal built in EMI filter to meet the conducted emissions and conducted susceptibility requirements of MIL-STD-461C. These converters are production friendly as these are based on surface mount technology. Thermal management is provided by conductive heat transfer and by using potting compounds. Design is tested at an ambient of 70°C for 320 hours.

Features
• Input voltage range 26 V to 32 Vdc
 Note: Can be modified to 24V-40 Vdc or 12V-24Vdc
 with minor modification
• Built in EMI filter to meet MIL STD 461 C
• Voltage feedforward topology
• Single and dual output models
• Up to 50 watts of output power
• Indefinite short circuit protection
• +5V/1.8A, +5.25V/1.8A, +7.5V/1.2A, +10V/2.5A, +15V/1A, +28V/0.9A, ±5V/0.5A & ±15V/0.5A
• Without Short circuit protection
 +5V/1.8A, +5.25V/1.8A, +7.5V/1.2A, +10V/2.8A, +15V/1A, +24V/1.5A, +28V/1A, +28V/1.8A, +32V/1A, ±5V/1A & ±15V/0.5A
Note: Can be modified to any other voltage levels (from 5V-32V) by minor design modification
• Fully isolated, magnetically coupled feedback
• Isolation resistance : 100MΩ @ 50V DC
• Fixed High Frequency switching
• Efficiency from 70-80%
• Typical output ripple is 50 mV
• Load regulation < 1%
• Line regulation < 0.2%
• Case size : 97 mm × 44 mm × 24.5 mm (Flanged)
• Weight : 125 gms

Technology transfer from ISRO
ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs/industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Supercapacitors

Indian Space Research Organisation (ISRO) at its Vikram Sarabhai Space Centre (VSSC) has developed the technology for processing Supercapacitors (2.5 V) of varying capacitance values viz., 5 F, 120 F, 350 F and 500 F for catering to specific applications related to Space and Societal needs.

Supercapacitors form a new class of electrochemical energy storage device poised to play an important role providing very high electric power boost demanded by applications. The beauty of this electrochemical component “Supercapacitor” is that it can be charged in seconds rather than hours; discharged as very high pulse current over million recharge cycles. Unlike batteries, it is environment friendly, maintenance free, efficiency level 98%, can operate at wide temperature range of -40°C to +70°C, it covers life span of 15 years without any quick ageing.

Operation and design: Conventional capacitor stores the electrical energy between two parallel plates by charge separation under the influence of electric field, whereas in super capacitor the charge is stored in an electrical double layer between electrode-electrolyte interfaces through oppositely charged ion adsorption in the interface manifested within Angstrom (Å) distance. Basic materials considered for processing such electrodes exhibit very large surface area (1500 – 3000 m²/g), paving way to achieve greater specific capacitance values (1-1000 F) along with high specific power. By this way, Super capacitors emerge to fill up the gap between conventional dielectric capacitors (for high power delivery) and batteries (for high energy supply). In addition, Supercapacitors are similar to batteries in design and configuration, but undergo charge and discharge operations continuously without significant degradation that batteries suffer.

Advantages: Supercapacitors can complement a primary energy source such as an internal combustion engine, fuel cell or a battery which cannot repeatedly provide quick bursts of high power. Using hybrid energy/power systems consisting of supercapacitors and battery in parallel, repeated pulse power needs can be met with, in which supercapacitor handles the peak power delivery while the battery provides sustained energy for load and recharging the supercapacitor. There will be significant advantage due to reduction of mass and size of battery as well as improved battery life and thus cost effective.

Applications:

Aero Space: Delivery of peak/high pulse current for ignition systems, separation systems, actuators etc., Such high power capability envisages high power communication during interplanetary missions as well as in conventional electronics.

Societal: Applications include automotive industry, hybrid transportation systems, grid stabilization, utility vehicles and rail-system power models. Supercapacitors could play an interesting role in consumer electronics powering electronic gadgets.
and cell phones to squeeze out extra energy and help a cell phone last longer.

Salient features of the systems (500 F typical)

<table>
<thead>
<tr>
<th></th>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rated Capacitance</td>
<td>500 F</td>
</tr>
<tr>
<td>2</td>
<td>Maximum ESR DC, initial</td>
<td>2.5 mΩ</td>
</tr>
<tr>
<td>3</td>
<td>Rated Voltage</td>
<td>2.5 V</td>
</tr>
<tr>
<td>4</td>
<td>Absolute Maximum Voltage</td>
<td>2.7 V</td>
</tr>
<tr>
<td>5</td>
<td>Absolute Maximum Current</td>
<td>1000 A</td>
</tr>
<tr>
<td>6</td>
<td>Leakage Current at 25°C</td>
<td>5 mA</td>
</tr>
<tr>
<td>7</td>
<td>Maximum Stored Energy, (Wh/kg)</td>
<td>> 5.5</td>
</tr>
<tr>
<td>8</td>
<td>Specific Power (P_{\text{max}})</td>
<td>5.4 kW/kg</td>
</tr>
<tr>
<td>9</td>
<td>Short Circuit Current, typical (A)</td>
<td>600-700 A</td>
</tr>
<tr>
<td>10</td>
<td>Operating Temperature</td>
<td>-20 to 65°C</td>
</tr>
</tbody>
</table>

Currently, VSSC has established the technology in lab level with equipment such as electrode preparation, dry assembly and testing. Interested parties may scale-up the technology as per their market demands.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Ultrasonic Burning Rate Measurement System (UBRMS)

Ultrasonic Burning Rate (UBR) measurement system is a technique developed by VSSC for measuring burning rate of solid propellants. The system employs ultrasound pulses to measure thickness of burning solid propellant.

The UBR measurement system consists of three units:

1. Hardware unit: The hardware unit of the system is a test setup in which the propellant specimen is burned.
2. Electronic unit: The electronic unit consists of a) ultrasonic transducer based electronics capable of acquiring data at very high sampling rate, b) data acquisition electronics to process the sensor data, c) computer to store/analyse the acquired test data, and d) ultrasonic and pressure transducers.
3. Processing Software: The entire operation of the UBR measurement system including electronic unit works upon a set of user-friendly graphical software packages. Commercially available data acquisition cards for processing of ultrasonic sensors can also be used, for which the software for initialization and data acquisition has to be developed separately.

Application:

The UBR measurement system is used for measuring burning rate of solid rocket propellant. This system can be set up in a small space for routine measurements in propellant plants or research purpose in laboratories. The system is safer, has better measurement accuracy, and requires low manpower with considerable savings in cost and time compared to conventional method of propellant burning rates determination.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs/industries/institutions/organizations in India. Capable parties interested in acquiring this know-how, may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
MEMS Acoustic Sensor

MEMS Acoustic sensor is used to monitor the Acoustic Levels generated during the launch of a satellite launch vehicle. It is a piezoelectric, MEMS sensor with built-in electronics. MEMS technology enables miniature devices to be precision batch fabricated. The sensors work in harsh environments and can withstand Vibration test, Shock test, Humidity test, Temperature soak tests. It is the first indigenously developed MEMS sensor flight-tested in an Indian Launch Vehicle and has operational heritage of 12 successive PSLV flights.

Salient Features

- Bulk micro machined silicon diaphragm with Piezoelectric sense layer on Silicon
- Range - 100 to 180 dB (2 Pa to 20 KPa)
- Frequency Range - 31.5 Hz to 6.3 KHz in 1/3rd Octave centre frequencies
- Sensitivity- 150 to 200 uV/Pa
- Amplitude Linearity - 2 dB
- Frequency response - 3 dB
- Weight–120 grams
- Operating temperature range - -40 to +125°C
- System design done at ASCD/AVIONICS/VSSC
- Process design & fabrication at CEERI, Pilani
- Built in electronics and hence smart
- Elimination of external signal conditioners
- Reduction in cabling and ease of integration

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Thermal Sensors

Indian Space Research Organisation at its Vikram Sarabhai Space Centre (VSSC), Thiruvananthapuram has developed thin foil heat flux sensors (Gardon Gauge) and temperature probes. They have applications in a variety of heat measurements like radiative and convective heat flux measurement for short durations in flight, aerodynamic heat transfer measurements on moving bodies during flight, plume heat flux measurement at nozzle exhaust, flame temperature measurement at nozzle exit, hot gas temperature measurement inside combustion chambers etc.

VSSC is willing to offer the process know-how of processing these sensors to eligible interested parties who are working in the domain of heat transfer/sensors.

Interested entrepreneurs are requested to contact the address given below with all relevant particulars regarding their line of current activity, infrastructure available, market assessment of the product, financial arrangements made, turn over and sales of their products for the past years and a copy of their latest annual report.

<table>
<thead>
<tr>
<th>Sensor Name</th>
<th>Measured parameter</th>
<th>Range</th>
<th>Sensor output at full range</th>
<th>over range</th>
<th>accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin foil heat flux sensor (uncooled)</td>
<td>Heat flux</td>
<td>10 and 30 W/cm²</td>
<td>Linear output, 10 mV</td>
<td>25% of rated heat flux</td>
<td>±5%</td>
</tr>
<tr>
<td>Thin foil heat flux sensor (cooled)</td>
<td>Heat flux</td>
<td>10 and 30 W/cm²</td>
<td>Linear output, 10 mV</td>
<td>25% of rated heat flux</td>
<td>±5%</td>
</tr>
<tr>
<td>Gas Temperature probe</td>
<td>Temperature</td>
<td>77 to 2500K</td>
<td>75mV</td>
<td>-----</td>
<td>±2%</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
TRISP (Triple Input Smart Power Supply)

Desktop PC equipped with inbuilt UPS functionality and direct solar interface, saving 65% power, is materialised using TRISP.

TRISP is an innovative power module with in-built UPS function to power Desktop PCs. The novel concept of TRISP can be adapted to any system which uses DC as its final power source and require power backup. With this configuration, during sunny days, a desktop PC consumes no power from the mains, whereas a conventional 1KVA UPS powered system consumes around 120 watts on an average.

Features

- Eliminates UPS and replaces SMPS in Desktop PCs
- Utilizes one of the three power sources including non-conventional power ie, solar power, mains power, and battery power.
- Ensures seamless change over between solar, utility and battery sources

Advantages

- 5 fold back up time compared to 1KVA UPS powered PC.
- Smartly uses green energy whenever it is available. Drastically reduces power line pollution.
- Power saving for 100000 PCs - around 1.5 million units per year (Rs.1.25 to 2 Cr).
- Mass production cost - one fourth cost of a 1KVA Online UPS.
- Ideal for use in remote settlements.
- Minimum maintenance, Better reliability and Safety
- Provision for powering DC input LCD/LED displays

VSSC is willing to offer the technology of TRISP to eligible interested parties who are in the field of manufacturing of PCs. Incorporation of TRISP in to the next generation of PCs will be a boon to the industry. Manufacturers of PCs can adopt this technology to tap the potential of green energy and to have energy saving for the nation.

Manufacturers of power systems/modules can manufacture TRISP modules which can be used to convert conventional PCs to TRISP PCs.
Interested entrepreneurs with the above mentioned background are requested to contact the address given below with all relevant particulars regarding their line of current activity, infrastructure available, market assessment of the product, financial arrangements made, turn over and sales of their products for the past years and a copy of their latest annual report.

Technology Transfer from ISRO
ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Dual Polarized, S&X Band Mono Pulse Feed for Tracking Leo Satellites

A dual polarized S/X Band feed has been designed and developed to cater for data reception from remote sensing satellites, which adopts frequency re-use for data transmission. The development of feed has enhanced the data rate capability of ground station, which is essential to acquire high resolution imagery data from future missions. The feed comprises of S and X band radiating elements, polarizer, comparator for extracting Sum and Difference signals (AZ &EL). Instead of using conventional radiating elements such as four horns, five horns or multimode horn, dielectric rod radiating elements with high aperture efficiency, rotationally symmetric beams with low side lobe levels have been used. The feed is a single channel mono pulse tracking feed which provides high tracking accuracy to auto track the satellites in X- Band and S-band. The dual polarized feed is capable of tracking in four modes, such as X-RHCP, X- LHCP, S-RHCP and S-LHCP, providing enormous flexibility to the ground station as it has the capability of switching to either of these modes.

The feed system has been integrated with a reflector of 7.5 m diameter in Cassegrain configuration and the system is made functional at National Remote Sensing Centre, ISRO to receive data from Low Earth Orbiting Earth Observation Satellites. The antenna & feed system provides a high G/T to receive data through LHCP and RHCP signals simultaneously. The dual polarized feed designed for frequency re-use facilitates high data rate signal reception, which otherwise is impossible, due to limited bandwidth available in X-Band signal reception.
Salient features:

- The feed, designed for mono pulse tracking, provides high tracking accuracy in X-band. The criticality of the tracking in X-band with very narrow beam width has been achieved.
- It is a composite feed, which performs tracking and receiving data in S&X-band. S-band feed contains circular helices and X-band contains dielectric rods.
- This dual polarized feed is capable of tracking in four modes, such as X-RHCP, X-LHCP, S-RHCP and S-LHCP. This provides the user great amount of flexibility as it has the capability of operating in either of these modes which one is receiving more signal strength or according to user’s choice.
- Instead of using conventional four horns or five horns as feed element, here dielectric rod radiating elements with high aperture efficiency, rotationally symmetric beams with low side lobe levels, have been used.
- A septum polarizer is designed to separate LHCP and RHCP component and produce linear polarized signal for the for comparator output. Septum polarizer exhibits good return loss and isolation between two ports, which receive orthogonal polarized components.
- S-band elements are composed of 20 turn tapered helix wound on a nylon former. Total eight helices are used four for RHCP and four for LHCP and capable of tracking in both orthogonal polarized mode.

Application:

The feed system has been integrated with a reflector of 7.5 m diameter in Cassegrain configuration and the system is made functional at National Remote Sensing Centre, ISRO to receive data from Low Earth Orbiting Earth Observation Satellites. The antenna & feed system provides a high G/T to receive data through LHCP and RHCP signals simultaneously.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Integrated Tracking System for Satellite Auto Track

Integrated Tracking System (ITS) has been designed, developed and made operational in remote sensing satellite ground station at NRSC. With the advent of this system, a new methodology has been adopted for deriving the tracking error information from single channel mono pulse tracking feed for precision satellite tracking. The Integrated Tracking System is a Digital Signal Processor based tracking system. The system amplitude demodulates the tracking IF signal consisting of tracking video and extracts Elevation and Azimuth DC errors. These error signals are then fed to servo control system for correcting the antenna position and track the satellite automatically. Earlier to this development, a total of 5 subsystems were used to realize all the functions required for satellite auto track. The ITS has brought out technology change, cost effectiveness and miniaturization in satellite ground station Design and Engineering.

Application:

- Mono pulse analog signal processing is done in IF domain to estimate elevation and azimuth pointing errors and auto track the satellites. The analog RF electronics involved are dual channel X-band Tracking Receivers for X-band, single channel S-Band Tracking receiver, Phase Shifter controller unit, scan code pulse generator and Tracking Demodulator Unit. All the above functions have been designed and realized in digital domain by using the state of the art technology of DSP and embedded systems as Integrated Tracking System.

Salient features:

- Miniaturization obtained by this Integrated Tracking System.
- DSP, FPGA based technology.
- Double channel X-band tracking receiver (input: 720MHz)- one LHCP, another RHCP.
- Single channel S-band tracking receiver (input: 70MHz)
- Auto diversity in channel selection.
- Built in error de-modulator.
- Tracking chain optimization for phase shift.
- Scan code pulse generation.
- Multi mission tracking capability and storage of optimized parameter for various missions.
- Flexibility in changing the parameters for optimization purpose.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Programmable IF Matrix

The main objective of the Programmable IF matrix is to facilitate total automation of the data reception chain including the RF signal routing path. The main function of the IF Switching Matrix is to facilitate the connectivity between any Antenna Terminal IF to any Demodulator.

Programmable IF matrix is designed for automatic operation by eliminating the manual intervention in the routing of various signals in the data reception chain. It eliminates the problems associated with manual patch panel like loose contact problems, mechanical wear and tear of the patch chords due to frequent operations, human errors etc., which in turn improves the reliability of the system while increasing the flexibility and reducing the complexity.

The in-house developed programmable IF matrix is an 8 x 10 switching matrix. It supports 4 input ports in the RHCP chain and another set of 4 input ports in the LHCP chain. The 4 RHCP Inputs can be routed as desired to a set of 4 demodulators and the inputs to another set of 4 demodulators can be routed as desired either from RHCP IF or LHCP IF. This Programmable IF matrix Unit also includes a Stand by port in both RHCP and LHCP signal path that acts as hot standby to any one of the 4 Terminal IFs. Programmable IF matrix also supports a monitoring port for all the input signals, this facilitates measurement of the input signal level on a Spectrum Analyzer. The configuration of this unit is done using Front Panel Key Pad in local mode or with TCP/ IP or RS -232 in remote mode. The mode selection is done with the help of Local/ Remote switch provided on the Keypad on the front panel. In remote mode the Keypad option is also available to the user apart from the TCP/ IP or RS-232 interface.

Specifications

<table>
<thead>
<tr>
<th>Electrical</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>DC - 4GHz</td>
</tr>
<tr>
<td>Matrix Size</td>
<td>8 (Inputs) X 10 (Outputs)</td>
</tr>
<tr>
<td>Matrix Type</td>
<td>Non-Blocking</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>20 dB (aprox.)</td>
</tr>
<tr>
<td>Port to Port Isolation</td>
<td>> 90dB</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.2 :1</td>
</tr>
<tr>
<td>Key Pad</td>
<td>3x3Matrixtype</td>
</tr>
<tr>
<td>LCD screen</td>
<td>240x128GraphicsLCD</td>
</tr>
<tr>
<td>Remote interface</td>
<td>Ethernet and RS-232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>+5°C to +40°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-10°C to +60°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power supply(external)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power Supply</td>
<td>230V+-10%AC@50Hz+/-3Hz</td>
</tr>
<tr>
<td>Operating voltages</td>
<td>+5V,+15Vand+24V</td>
</tr>
</tbody>
</table>
The functional block diagram of IF Switching Matrix with all the support interfaces is as shown below.

Salient features:

- Facilitates Multi-port Matrix operation.
- Port-to-port isolation in DC-4GHz band is more than 100 dB.
- The Path length of all the signal paths has maintained constant with in the Programmable IF matrix. Hence, this mode of configuration has lesser Insertion loss and better VSWR.
- Loads default configuration after Power ON.
- User can modify the inputs any number of times before configuring the signal path.
- Remote configuration through TCP/IP or RS-232

Applications

- Routing various RF signals in a multi-mission ground station.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Design & Development of FPGA Based Digital Demodulator

As different Satellites use different modulation schemes with variable data rates, in order to cater to the Multi-satellite data reception requirements of a ground station, it is necessary to have greater flexibility and programmability features embedded in the design of demodulators. The demodulation techniques for Binary/Quadrature Phase shift Keying (BPSK/ QPSK) are well-established and understood when implemented with analog circuits. Recently, state-of-the-art digital technology allows Radio Frequency (RF) signals to be processed in the digital time domain. Modulated RF signals are digitally sampled and then demodulated in real-time using digital signal processing techniques implemented on FPGAs. Because of the usage of FPGAs, the design can have low power consumption, size and cost reduction. Furthermore, these digital demodulators can be reconfigured and upgraded to enhance the data rates in future.

The BPSK/ QPSK can be demodulate by different techniques such as squaring loop, Costas loop and others in analog domain. The Costas loop technique has adopted for developing the demodulator in digital domain as in this the carrier recovery and data demodulation can be done simultaneously with block level design. The high data rate digital demodulator is planned to perform IF amplification, filtering and analog to digital conversion of the received IF signal followed by a Digital demodulator. The basic design strategy includes a configurable data rate BPSK/ QPSK demodulation with COSTAS loop circuitry utilizing the flexibility of FPGA implementation.

The IP core development for the demodulation including carrier recovery have been tested for the 8 Mbps BPSK and 42.4515Mbps QPSK as shown in the block diagram. The Prototype Hardware implementation has done using separate ADC and FPGA evaluation board s. The final realization of the demodulator logic has implemented on an integrated ADC-FPGA board.

Block diagram of proposed demodulator
Specifications

<table>
<thead>
<tr>
<th>parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling frequency (Fs)</td>
<td>125 MHz-250 MHz</td>
</tr>
<tr>
<td>Carrier frequency</td>
<td>30 MHz (BPSK), 70 MHz (BPSK/QPSK)</td>
</tr>
<tr>
<td>Data Rates (Fb)</td>
<td>8 MBPS (BPSK), 42.4515 MBPS (QPSK)</td>
</tr>
<tr>
<td>Low pass filters used</td>
<td>Raised Cosine FIR</td>
</tr>
<tr>
<td>FIR sampling frequency</td>
<td>(Fs/10) for 8 MBPS data rate and (Fs/4) for 42.4515 MBPS data rate</td>
</tr>
<tr>
<td>FIR Cut-off frequency</td>
<td>1.5*(Fb/2) for BPSK and 1.5 * (Fb/4) for QPSK</td>
</tr>
<tr>
<td>Loop filter used</td>
<td>1st order Butter worth IIR</td>
</tr>
<tr>
<td>Loop filter cut-off frequency</td>
<td>200 KHz</td>
</tr>
</tbody>
</table>

Conclusion:
The design of demodulator is proven for 8MBPS data rate BPSK demodulation and 42.4515 MBPS QPSK demodulator and the test results are presented. The results show a promising inference for further scope of improvisation with respect to data rate and programmability.

Applications

- High Data rate demodulation for remote sensing data reception system.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Low Noise Amplifiers (LNAs) and RF Amplifiers for GNSS & VHF bands

U R Rao Satellite Centre (URSC) of Indian Space Research Organisation (ISRO) has developed Low Noise Amplifiers and RF Amplifiers for GNSS & VHF bands application.

Specifications:

- **Low Noise Amplifier (LNAs):**
 - GNSS LNAs realized in L1 & L5 bands based on hetero-junction & bi-polar transistor based designs offering excellent noise figure to amplify very weak signals.
 - VHF band LNAs support low noise amplification needs for receivers for automatic identification of ships.

- **RF Amplifiers:**
 - Low-power designs based on hetero junction & bi-polar transistors.
 - Developed for use in GNSS bands of L1 & L5 as well as VHF bands.
Major Specifications

<table>
<thead>
<tr>
<th>Low Noise Amplifiers</th>
<th>RF Amplifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency bands</td>
<td>VHF (155-165MHz)</td>
</tr>
<tr>
<td></td>
<td>GNSS L1 & L5</td>
</tr>
<tr>
<td>Gain</td>
<td>>20dB</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>Better than 1db</td>
</tr>
<tr>
<td>RF Interface</td>
<td>SMA</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>5V</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
E-Plane Filter

U R Rao Satellite Centre (URSC) of Indian Space Research Organisation (ISRO) has developed Low loss, high Q band pass filter with high power handling capability designed for data transmission applications in LEO satellites.

Specifications:
- Waveguide filter with high Q.
- Low insertion loss.
- Moderate bandwidths (1 to 7%).
- Easy to change centre frequency and bandwidth.
- Handles RF powers beyond 2kW.
- Simple in construction.
- Mass production suitability.

Major Specifications:
Centre frequency : 8.2 GHz.
Bandwidth : 160 MHz.
Insertion loss : 0.5 dB max.
Return loss : 17 dB min.
Group delay : 6 nsec max.
Rejection : 90 dBc for lower frequency bands.
Power handling : 200 W CW at vacuum conditions.
RF interface : WR112 waveguide flange.
Size : 50 x 35 x 200 mm³.
Mass : 200 grams.

Measured response of E-plane Filter at X band

E-plane filter at X-band
Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Evanescent Mode Filters

U R Rao Satellite Centre (URSC) of Indian Space Research Organisation (ISRO) has developed a Low loss microwave band pass filter designed for X-Band Data transmitter to allow the required band of frequencies and reject all other frequencies.

Specifications:
- TEM mode operation in cavity.
- Narrow bandwidth.
- Symmetric skirt response.
- High rejection bandwidth.
- Coaxial interface.
- Compact and light weight.
- Mechanically robust.
- Mass production suitability.
Major Specifications:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre frequency</td>
<td>8.2 GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>360 MHz</td>
</tr>
<tr>
<td>Insertion loss</td>
<td>0.35 dB max</td>
</tr>
<tr>
<td>Return loss</td>
<td>17 dB min</td>
</tr>
<tr>
<td>Group delay</td>
<td>4 n sec max</td>
</tr>
<tr>
<td>Rejection</td>
<td>90 dBc up to 2f0</td>
</tr>
<tr>
<td>Power handling</td>
<td>20 W CW at vacuum conditions</td>
</tr>
<tr>
<td>RF interface</td>
<td>SMA jack</td>
</tr>
<tr>
<td>Size</td>
<td>15 x 15 x 40 mm³</td>
</tr>
<tr>
<td>Mass</td>
<td>50 grams</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Battery Charge Regulator (BCR)

U R Rao Satellite Centre (URSC) of Indian Space Research Organisation (ISRO) has developed Battery Charge Regulator (BCR) for battery charging and bus regulation. Battery charge regulator (BCR) is designed with Constant Current-Constant Voltage (CC-CV) and BUS priority loop to cater to LEO as well as GEO Satellites. The main feature of the BCR is that it has a mechanism to give priority to the load requirements in preference to battery charging whenever there is a power generation deficit in the solar array.

Specifications:
- TEM mode operation in cavity.
- Narrow bandwidth.
- Symmetric skirt response.
- High rejection bandwidth.
- Coaxial interface.
- Compact and light weight.
- Mechanically robust.
- Mass production suitability.
Technology Transfer

Major Specifications:

- **Dimensions (L × W × H):** 286×70×212 [mm]
- **Mass:** 2500 gram
- **BUS Voltage:** 71 Volts
- **Power Dissipation @ BCR Pout = 700W:** < 30 Watt
- **Current TM:** 0-5V
- **Output Current (Selectable):** 0 -> 10A (00H -> FFH)
- **Output Voltage (Selectable):** 0 -> 67.2V (00H-> FFH)
- **Output Power Capability:** 800Watt (Max)
- **Efficiency @ BCR Pout = 700W:** >95%
- **Output Current:** 10A
- **Over Current Protection:** > 12A

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Battery Discharge Regulator

U R Rao Satellite Centre (URSC) of Indian Space Research Organisation (ISRO) has developed a Battery Discharge Regulator to maintain the bus regulation during eclipse and peak power requirement periods to avoid the off-optimal operation of the solar array and consequent over sizing of battery. BDR is a Boost Regulator, which regulates the bus voltage in spite of the variations in the battery voltage. This results in 3 to 4% improvement in the overall efficiency of the user DC-DC and TWTA converters. BDR is modular in nature and can be scaled according to the load requirement.

Specifications:

- Average Current Mode programming for load current sharing.
- Alternate path for fuse blow current and turn on inrush currents.
- Current transformer sense for implementing OCP.
- MVL based inclusion/exclusion.
- Protection Circuits:
 - Pulse by pulse type output over current limit protection.
 - Over voltage limit protection for Output over Voltage.
Major Specifications:

Input Voltage (V) : 45 to 67V
Output Voltage (V) : 69.5±0.5
Output Power (W) : 1000W
Topology : Non Isolated Boost
Efficiency (%) : >94%
OVP Limit (V) : 77V (110%)
Current Limit (%) : 120 % of Full (100%) Load Current
Telemetry
- Analog : Output Voltage, Output Current
- Digital : Ovp Relay & On/Off Relay Status
Dimensions (L*W*H) : 86*70*212(mm³)
Package Mass : 2.5kg

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Eddy Current Damper

U R Rao Satellite Centre (URSC) of Indian Space Research Organisation (ISRO) has developed Eddy current Damper, a deployment rate control device. It is passive in nature and makes use of the resistive eddy currents developed when a nonmagnetic conductive disc rotates in a magnetic field. The damper employs a gear train to amplify the resistive torque generated. The damper is used to control the deployment rate of the solar array and bring down the latch up shock on the panels. The resistive torque developed is proportional to the rate of rotation of the disc and hence rate of deployment of the panels is self-regulating.

Specifications:
- Very high damping rate.
- Wide temperature range.
- Non contact type and good reliability.
- Good temperature stability.

Battery Discharge Regulator

Major Specifications

<table>
<thead>
<tr>
<th>Salient Damper Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damping Rate</td>
</tr>
<tr>
<td>Mass</td>
</tr>
<tr>
<td>Magnet Type</td>
</tr>
<tr>
<td>Gear Type</td>
</tr>
</tbody>
</table>
Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Foil Heaters Using Pyralux® Adhesive

U R Rao Satellite Centre (URSC) of Indian Space Research Organisation (ISRO) has developed Kapton® Foil heaters using Pyralux adhesive for power rating of 2.5 Watts per square inch. Using the technology, heaters of different sizes and resistances are fabricated, tested and implemented on the satellite components for temperature rise so that components are maintained above its lower operating limit.

Specifications:
- The heaters are thin flexible heating elements laminated between insulating layers of Kapton®
- Heater sizes and Resistances can be varied as per the requirement.
- Heaters are qualified to NASA-GSFC-S-311-79 standard.
- Heaters of insulation resistance more than Gohm.
- Dielectric strength is more than 500 Vrms.
Major Specifications:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Rating</td>
<td>2.5 Watts per sq.in in still air</td>
</tr>
<tr>
<td>Heater leads</td>
<td>26AWG, Kapton insulated and 0.5 m long</td>
</tr>
<tr>
<td>Resistance tolerance</td>
<td>±10%</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-65 OC to +150 OC</td>
</tr>
<tr>
<td>Mounting Method</td>
<td>Using transfer adhesive</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Salient Features & Major Specifications.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminate material</td>
<td>High-Tg FR4</td>
</tr>
<tr>
<td>Total PCB Thickness</td>
<td>2.25 mm ± 0.15 mm</td>
</tr>
<tr>
<td>Minimum through hole size</td>
<td>0.40 mm (16 mils) finished</td>
</tr>
<tr>
<td>Minimum drilled hole size</td>
<td>0.50 mm diameter</td>
</tr>
<tr>
<td>Standard through hole size</td>
<td>0.80 mm (32 mils) finished</td>
</tr>
<tr>
<td>Minimum pad diameter</td>
<td>1.0 mm (40 mils) by design</td>
</tr>
<tr>
<td>Standard hole pad diameter</td>
<td>1.5 mm (60 mils) by design</td>
</tr>
<tr>
<td>Minimum Trace width</td>
<td>0.125 mm (5 mils) by design</td>
</tr>
<tr>
<td>Minimum spacing</td>
<td>0.100 mm (4 mils) by design</td>
</tr>
<tr>
<td>Minimum Dielectric separation</td>
<td>100 μm (4 mils)</td>
</tr>
</tbody>
</table>

Fine line PCB Technology for Fine-pitch surface Mount Devices

U R Rao Satellite Centre (URSC) of Indian Space Research Organisation (ISRO) has develop and qualify the technology for PCBs with fine conductor features of 5 mil trace width and 4 mil spacing to cater for various fine pitch surface mount devices in the Solid State Recorder (SSR) packages of high resolution imaging LEO Satellites.

Fine Line SSR Multiplayer PCB Replaced 6 Normal MLBs

Fine Lines Replaced with Liquid Photoimageable Resist
Technology Transfer

Outer layer basic copper : ½ oz (17.5 microns)
Outer layer Copper thickness : 52.5 (± 10) μm (External) finished
Inner layers Copper thickness : 30 (± 05) μm, Internal
Multilayer Construction : Laminate type construction
Fabrication Technique : Subtractive type, Electroless Copper, SMOBC
Solder mask material : Electra EMP110, Carapace
Surface finish : Eutectic Solder (Sn-63 / Pb-37)

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Rigid-flex multilayer PCB Technology

U R Rao Satellite Centre (URSC) of Indian Space Research Organisation (ISRO) has Rigid-flex multilayer PCB Technology for high reliability 3D packaging applications in space electronics. The rigid-flex multilayer PCB technology provides several benefits with minimized connectors, harness, and motherboard assemblies, eliminates human errors, and also results in reduced weight and volume for interconnecting different functional electronics through flexible structures in 3D Packaging.

Specifications:

- 3D packaging feasibility.
- Reduced Weight & Volume with minimized Harness & Connectors.
Major Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of PCB</td>
<td>Rigid-flex combination with one (or) two layers of flex</td>
</tr>
<tr>
<td>No. of Layers</td>
<td>3 layers to 14 layers total, as per layer stack diagram</td>
</tr>
<tr>
<td>Total PCB Thickness</td>
<td>Minimum 1.6mm to 2.3 mm maximum (Rigid portion) 0.2 mm to 0.4 mm (Flexible portion)</td>
</tr>
<tr>
<td>Material for Rigid Laminate</td>
<td>Glass-polyimide, Tg > 240°C, complying to IPC 4101/41 specifications</td>
</tr>
<tr>
<td>Material for Flexible Core</td>
<td>All polyimide, adhesive-less, Tg > 210°C, complying to IPC 4204/11 specifications</td>
</tr>
<tr>
<td>Material for Flexible Coverlay</td>
<td>Kapton film (25 to 50 microns thick) with adhesive on one side, complying to IPC 4203/1 specifications</td>
</tr>
<tr>
<td>Material for Bonding flex and Rigid Layers</td>
<td>Low-flow glass-polyimide, complying to IPC 4101/41 specifications</td>
</tr>
<tr>
<td>Inner Layer Copper Thickness</td>
<td>35 microns for double side flex 35 microns (or 70 microns) for single side flex 35 microns for all rigid layers</td>
</tr>
<tr>
<td>External Layer Copper Thickness</td>
<td>Total 52 microns to 70 microns, including 35 microns plated copper, as specified in layer stack diagram</td>
</tr>
<tr>
<td>Etchback</td>
<td>Positive etchback of 5 to 15 µm, complete desmear is also acceptable, negative etchback is not allowed</td>
</tr>
<tr>
<td>Multilayer Construction</td>
<td>Laminate type construction</td>
</tr>
<tr>
<td>Fabrication Technique</td>
<td>Subtractive process, Electroless Copper, SMOBC</td>
</tr>
<tr>
<td>Solder Mask Material</td>
<td>Electra EMP110 (or) Taiyo PSR-4000BN</td>
</tr>
<tr>
<td>Surface Finish</td>
<td>Solder or Electroless Nickel Immersion Gold (ENIG)</td>
</tr>
<tr>
<td>Solder Specifications</td>
<td>Tin - 63% / Lead - 37%</td>
</tr>
<tr>
<td>ENIG Specifications</td>
<td>0.05 microns gold with 3 to 6 µm Nickel undercoat</td>
</tr>
<tr>
<td>Bare board test (BBT)</td>
<td>Rigid-flex PCB shall pass electrical test for continuity and isolation</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
HMC DC-DC Converters (30W)

U R Rao Satellite Centre (URSC) of Indian Space Research Organisation (ISRO) has developed 30 W HMC DC-DC Converters to meet Electrical performance with High Reliability requirements for Space Application with minimum size and weight. HMC DC-DC Converters developed for Space Application adopting Innovative Thick Film Process technology developed and qualified for Space application.

Specifications:

- Meets Electrical performance with High Reliability requirements for Space Application.
- Minimum size and weight.
Major Specifications:
The main features of the 30W HMC DC-DC Converter are as follows:

- Converter design meets high reliability requirements and provides output voltages of +5V, +15V and -15V.
- Components (in die form) used are compliant to MIL-38534 QML-V or Class-K
- Hybrid design and fabrication processes comply to ISRO-PAS-206 guidelines.
- Innovative thick film process technology with special subassemblies adopted for realisation of the power hybrid which is housed in custom designed package of Molybdenum base and Kovar ring.
- The Converter performance suits typical space electronic systems up to 30W, covering requirements of EMI, regulation, thermal dissipation and standard protection features.

The main specifications are as follows:

Input voltage range : 26-42V
Triple outputs (±15V and +5V) delivering up to 30W
Built-in EMI filter capable of meeting ISRO Standards (based on MIL-461C)
Converter shutdown feature
Efficiency : 75%
Switching frequency : 250 KHz
Short circuit, over load and under voltage lockout protections
Telemetry monitoring feature
Size : 3.5”x3.5”x0.65”
Weight : 245 gms

Technology Transfer from ISRO
ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Salient Features:
- Complete Digital implementation for GEO-optical payload
- Telecommand configurable modulation schemes
- 16-APSK modulation: 2Gbps/ 675MHz BW
- 8-PSK modulation: 1.5 Gbps/ 675MHz BW
- QPSK modulation: 1 Gbps/ 675MHz BW
- Root raised cosine filter with $\alpha=0.35$
- Two 1.575Gbps SERDES interface for data acquisition, Virtex-5 FPGA, Wide band clock synthesizer, High speed DACs
- DAC and RF Gain flatness response compensation in FPGA
- Two DAC synchronization for external IQ modulator
- Temperature cycling completed in -10°C to 60°C
Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Miniaturized methane sensor based on GRIN lens

Space Applications Centre (SAC) has developed a miniaturized methane sensor using GRIN lens and small etalons is developed which is well capable to measure Earth methane and to fly on airborne platform to map Earth’s methane. This is a first of its kind of sensor based on GRIN lens. The lens is 1.8 mm clear aperture and 4.54 mm of length. The collecting lens was chosen such that the spot size is lesser than the clear aperture of the GRIN lens so that the entire energy can be coupled with the GRIN lens. The sensor can be flown from spaceborne platform (for Earth’s Methane observation) with proper qualification and modification in electronics and including necessary interfaces.

Applications area:
The potential application areas are Industries, agricultural department/universities, dairy research, paddy cultivation, Livestock, Environmental science departments. The payload is primarily designed for airborne platform. The performance achieved is suitable to use it for airborne measurement. The weight and power of the instrument is also suitable for nanosatellite.

Salient Features:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector Type</td>
<td>InGaAs, Single Pixel detector, One for each Channel</td>
</tr>
<tr>
<td>Detector size</td>
<td>1 mm</td>
</tr>
<tr>
<td>Fore optics diameter</td>
<td>24.5 mm</td>
</tr>
<tr>
<td>Focal length</td>
<td>25.4 mm</td>
</tr>
<tr>
<td>IFOV</td>
<td>39.3 mrad</td>
</tr>
<tr>
<td>Responsivity</td>
<td>1 A/W</td>
</tr>
<tr>
<td>Targeted Methane concentration measurement and SD</td>
<td>1800 ppb of Earth’s atmospheric column with SD ~100 ppb.</td>
</tr>
</tbody>
</table>
Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Active 3D Imaging Lidar Camera

Space Applications Centre (SAC) has developed an Active 3D imaging Lidar camera that works on Time-of-Flight (ToF) principle. The camera measures the depth of scene points using flash LIDAR (Light Imaging Detection and Ranging) technology. The depth information is determined by correlating the reflected light signal from the scene with the transmitted reference signal. The three-dimensional data obtained from ToF sensor can be used for many control and navigation applications. This technology is useful to generate intensity and depth profile of targets irrespective of ambient lighting condition.

Applications areas of the Technology:
This technology can also be primarily useful for following other application areas:

- People Detection and counting in heavily crowded place
- Mobile postal parcel size measurement for large scale logistics
- Machine Safety using depth measurement
- Helicopter Near Terrain flight assistance for assisted landing
- Hazard detection for Car Collision avoidance system
- Hazard detection for Pedestrian detection and braking system
- Body size measurement predicting the waist, hip size and further prediction of lifestyle issues.
- Man, Machine Interface like gesture recognition devices in mobile phone, TV, Xbox gaming sets, etc.
- 3D distance measurements, volumetric mapping of objects
- Space Docking between 2 docking satellites
- Interplanetary Soft Landing: Hazard Detection
Salient Features:

<table>
<thead>
<tr>
<th>SI No.</th>
<th>Parameters</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lidar Technology</td>
<td>Phase detection</td>
</tr>
<tr>
<td>2</td>
<td>Wavelength</td>
<td>860 nm</td>
</tr>
<tr>
<td>3</td>
<td>Depth Range</td>
<td>up to 12 meters</td>
</tr>
<tr>
<td>4</td>
<td>Depth Accuracy</td>
<td>< 10 cm for range up to 5 m</td>
</tr>
<tr>
<td>5</td>
<td>Update Rate (Camera)</td>
<td>5 Fps</td>
</tr>
<tr>
<td>6</td>
<td>FOV</td>
<td>90ºx60º</td>
</tr>
<tr>
<td>7</td>
<td>3D Points Per frame</td>
<td>76800 Points per frame</td>
</tr>
<tr>
<td>8</td>
<td>Dimension</td>
<td>370 x 275 x 246 mm</td>
</tr>
<tr>
<td>9</td>
<td>Mass</td>
<td>8 Kg</td>
</tr>
<tr>
<td>10</td>
<td>Power</td>
<td>42 W (Average)</td>
</tr>
</tbody>
</table>

Camera Features:

- Option to view the Intensity image or the color coded depth point cloud
- Unique ambient light suppression, the camera can be used under full sunlight condition.
- Absolute accuracy in the sub-centimeter range with appropriate setup and calibration
- Dual phase mode for Motion blur reduction
- 2x2 Binning option for range enhancement.
- Dual Integration time mode (High Dynamic Range, HDR mode)
- Sensor Measurement rate up to 20 TOF frames per second and camera about 5 TOF frames per second.
- Region of interest setting to maximize the Frame rate in KHz.
- Programmable exposure time to adjust the SNR and hence the depth accuracy. Real time display to fine tune the exposure to achieve the maximum depth accuracy while avoiding pixel saturation.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Highly Accelerated Thermal Shock (HATS) System for assessment of PCB via reliability

Space Applications Centre (SAC) has developed indigenous Highly Accelerated Thermal Shock (HATS) System for assessment of PCB via reliability. The system is realized by assembly and integration of thermal conditioning system, which is used to give thermal shock and preconditioning simulation, and specially designed instrumentation, which acquires and processes the 4-wire resistance measurement data in real time. The data acquisition and monitoring application is developed in-house. Another offline data processing application is also developed to process the data and find the peak resistance variation of all nets of each PCB coupon (total 32 nets).

Advantages:
- Indigenously developed system,
- Quick in testing of samples (within 3.5 days),
- Highly configurable and scalable system and test parameters,
- System design as per the requirements of IPC-9151D standard,
- Simple and easy to operate, no specialized training required,
- Testing cost and duration are significantly less than foreign test service providers
Systems Operations:

The via reliability assessment is done by subjecting the PCB samples (coupons) to a thermal shock from -40 °C to +145 °C and vice versa, within 120 sec and maintaining the samples at extreme temperatures for 180 sec. This forms a single thermal cycle. The cycle is repeated for 500 times. Each PCB coupon has electrical circuits (nets) which are comprised of vias and trace interconnects. The precision 4-wire resistance of the each circuit is monitored and logged throughout the test. The peak resistance of each net is determined for every thermal cycle and percentage variation of second peak onwards is calculated with respect to very first peak. As per the IPC protocol, a variation of more than 10%, observed any time during the test, is not acceptable and that particular sample is deemed as failed. There is also a provision to conduct assembly preconditioning before the test, where the samples are subjected to 6 cycles of reflow soldering profile, so that assembly stresses are captured by the samples and any serious degradation is subsequently detected by the HATS test.

Applications:

This test setup can be used for Batch Acceptance Tests for FM bare PCBs, Vendor Qualification, Material Qualification, Incremental Qualification, VOQ (verification of qualification), project specific qualification requirements, Qualification of new PCB technologies like HDI, Rigid-flex and Hybrid PCBs etc.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
The CAL-VAL systems consist of a pair of buoy named “Optical & Met” in deep ocean & a robotic sun-photometer on the island. A discuss type wave following buoy, filled with Polyurethane foam, for deep sea application is used as a platform to mount the sensors. This buoy type has 2.2m diameter and 2100 kgs reverse buoyancy weight and a central pipe structure of 5m length with three 1.75m arms extending side ways.

The in-situ parameters available are: optical, meteorological, biological, physical & atmospheric.

Objectives
ISRO has developed successfully CAL-VAL site at Kavaratti for India’s OceanSat-II OCM-II sensor’s vicarious calibration and its geo-physical product validation. The recent observations from various instruments are analysed along with OCM-I & OCM-II radiance products and other contemporaneous satellite sensors.

Potential utilization & applications of the site/data
- Vicarious in flight calibration of Ocean colour sensors
- Validation of OceanSat-II Geo-physical products
- Bio-optical algorithm development and its validation
- Time series studies and inter-sensor comparison
- Near real time data evaluation

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre (ISRO), Ahmedabad has designed and developed a photosynthetic irradiance incubator (photosynthetron) for marine and fresh water applications. This is used to measure the photosynthetic-rate parameters (PI) of phytoplankton, the microscopic, photosynthesising green plants of the ocean. PI parameters constitute an important element for modelling and estimating oceanic primary production using remote sensing data. The major components of the photosynthetron are the main incubation chamber, source lamp, lamp housing chamber, flat rectangular bottles on a movable rack, temperature sensor, submersible pump, motor and gear box.

Method of Operation

- The photosynthetron incubates a sample of phytoplankton with a tracer under controlled light gradient provided by a light source and a series of optical screens, designed to simulate light depths of aquatic environment.
- The incubation chamber houses linearly arranged twelve bottles on a rack containing phytoplankton sample and the rack is attached with a gear system for continuous tilting motion to allow phytoplankton to remain in suspension as in natural environment.
- The chamber is filled with water which is continuously circulating. A temperature sensor monitors the temperature of the water bath, which helps in maintaining the desired ambient water temperature for the samples. The period of incubation of the sample is programmable.

Potential users

All laboratories, research institutes, universities involved in marine & oceanographic research especially in the area of primary production by phytoplankton and fisheries.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Ground Penetrating Radar (GPR)

Salient Features

• Based on stepped-frequency continuous wave (SFCW) approach, ultra-wideband (100%, i.e. bandwidth of 500MHz with centre-frequency of 500 MHz).
• Depth Resolution better than 30 cm.
• Integrated GPS for geo-tagging of the recorded data.
• Built using commercial components readily available in the market, thus increasing the prospects of using indigenously developed GPR instruments at much lower cost (20 times lower compared to imported versions) for commercial and scientific use.
• Total mass of the system is 10 kg out of which 5 kg is for electronics and antennas and the rest for the structure (can be further optimized). Power requirement of the instrument is 10 W.

Potential Applications

• GPR is a high resolution imaging radar that works on the principle of scattering of EM waves to locate buried objects. It operates by transmitting high frequency directly down into the ground via wideband antennas and detecting the reflected signals from targets (objects or materials with a dielectric contrast with the surrounding medium) buried beneath. It can be brought to use for the following applications:
 • Can be brought to use for both commercial as well as scientific applications.
 • GPR is an instrument that finds applications in environmental, engineering, archaeological, and other shallow investigations.
 • Different applications require subtle changes in the hardware (frequency selection) as well as the processing software. Therefore once the exact application goal is defined the system can be tuned accordingly.
Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Detection of Landslides from High Resolution Optical Satellite Data

Landslide is a geomorphic phenomenon; therefore, its identification is difficult to address in spectral domain alone using satellite/aerial datasets. The common noticeable feature after occurrence of landslides is the loss of vegetation and exposure fresh rock and soil. This unique property of a landslide in combination with its relationship with slope related parameters is used to create a generic routine in a COTS s/w, and is implemented through the following four sub-modules.

All the characteristic features of landslides derived from satellite data (e.g. NDVI, brightness) and DEM (e.g. slope, relief, curvature) were fused together in a series of steps comprising of controlled segmentation, merging, classification, thresholding etc. To increase the robustness and transferability of the landslide, a data driven thresholding approach using K-means algorithm was employed. The knowledge-based approach was further strengthened by utilising change detection technique that increased the landslide detection accuracy from 76.4\% to 96.7\%. The minimum size of the landslide that can be detected using this method depends upon the resolution of the satellite data. However, using 5.8 m resolution data, a landslide of 774 sq. m was detected. The object-based landslide detection technology developed to detect landslides from segmentation to classification.
Salient features:

- This technique requires only high resolution optical satellite data. The technique combines spectral, shape, texture, morphometric and contextual information derived from high resolution Indian satellite data and DEM for the preparation of new as well as historical landslide inventories.

- The main innovative aspect lies in the selection of landslide diagnostic parameters and their use in the comprehensive characterization of different types of landslides, a concept which is addressed for the first time for detection of landslides in an object-based environment. Towards the development of a robust data driven methodology, a new POF was developed that was helpful in the multi-scale analysis of a terrain. Together with POF, and applying a change detection method using archived satellite data, a maximum landslide detection accuracy of 96.7% in Okhimath area of the Uttarakhand state could be achieved. The method has been validated in other mountainous terrains of India that has a different geological and geomorphological setup.

APPLICATIONS

- This technology will be used to create routine landslide inventories e.g. on monthly or annual basis for large Himalayan region in India. This technology can also be used for land cover classification or vegetation change detection after suitable adaptation, since few land cover units such as barren land, agricultural land has already been identified as false positives to landslides.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
e-Smart

e-System for Mechanical Workflow-Management And Reporting Tool

e-SMART is an online software tool to automate and provide seamless end-to-end workflow management from designer to delivery.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>End-to-end workflow management</td>
<td>All departments like Designers, Planning Engineers, Workshop Engineers, Cutting-Store Personnel, Inspection Engineers and Management Personnel work on same platform</td>
</tr>
<tr>
<td>Simple and intuitive interface.</td>
<td>Easy to train manpower</td>
</tr>
<tr>
<td>Web based Scalable architecture</td>
<td>Saves on infrastructure costs. Remote facilities can be connected</td>
</tr>
<tr>
<td>User-level Authorization and authentication</td>
<td>Responsibility and accountability</td>
</tr>
<tr>
<td>Provision for Data-warehousing and automated daily-backup</td>
<td>Data protection</td>
</tr>
<tr>
<td>3D Visualization of fabrication parts in web browser</td>
<td>No commercial/paid CAD/CAM software required</td>
</tr>
<tr>
<td>Thumbnails (small images) of fabrication parts facilitate in quick visualization and identification</td>
<td>Increases productivity</td>
</tr>
<tr>
<td>More than 60 online reports can be generated and exported in multiple formats like .rpt, .xls, .doc, .xml</td>
<td>Critical Information for decision-making can be obtained</td>
</tr>
<tr>
<td>Back traceability of a part</td>
<td>Complete history of a part can be obtained</td>
</tr>
<tr>
<td>Paperless operations</td>
<td>Saves on cost and delays due to movement of papers</td>
</tr>
</tbody>
</table>

✔ ALL mechanical fabrication workflow activities of SAC are managed by e-SMART system.
✔ e-SMART is in use and operations in SAC for more than 7 years.
✔ Thus, it makes e-smart time tested and proven software.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Methods and system to control the data processing workflows in distributed environment with asynchronous message driven mechanism

A production workflow includes an ordered sequence of tasks to be executed that needs to be distributed on multiple computational nodes. Each task is assigned by a sender application to a receiver application running on a computational node through a message. On receiving the message, the receiver application sends an acknowledgment to the message and schedules the sub tasks associated with the task. The sender application on receiving the acknowledgment removes the message from the queue otherwise the messages are stored in the database. On completion of the sub tasks the receiver application generates a message and the sender application on receipt of the message takes up the next task in the sequence and generates a message to another application. The sender application keeps on generating messages till all the tasks are completed in the sequence. The methods adopted in this invention provides persistence and guaranteed delivery of messages thereby improving the quality of service in transaction processing systems that are managing complex workflows.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre (SAC) has developed in-house Microwave remote sensing data analysis software called Microwave Data Analysis Software (MIDAS). MIDAS is conceived and designed, to cater to various application driven analysis methods to analyze microwave remote sensing data. Currently it caters to SAR data analysis only, which includes different decomposition techniques for Full Polarimetry (FP) and Hybrid/Compact Polarimetry (CP). The software tool also has functional modules for doing radiometric quality analysis and impulse response analysis.

It has different speckle filters for SAR specific noise removal. It also includes techniques for glacier classification and facies detection, oil spill detection, ship detection etc. This software has been designed in a modular fashion to support new sensor data interfaces and the required application algorithms. Besides supporting ISRO sensors, MIDAS additionally, supports various SAR missions of other space agencies such as ALOS-1, RADARSAT-2, NASA-JPL UAVSAR and Sentinel-1.

Main Capabilities:

- Written in C/C++
- Capable GUI in JAVA with Integrated image viewer.
- Polarimetric speckle filters integrated along with 11 amplitude filters
- Fast, modular and easily extensible
- Support for full-pol decompositions include H-A-Alpha, Pauli, Yamauchi, Freeman-Durden and Raney (CP decomposition) etc.
- Full-pol Vanzyl type polarization response (polarimetric signature) generation module.
- ROI handling along with Wishart supervised classifier.
- Tools for Radiometric analysis & Impulse Response analysis.
- Sigma0, Gamma0 modules.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Lithography and Patterning on Thin Film for Hi-Rel MIC

Introduction:

Space Applications Centre (SAC) of ISRO has developed Lithography and patterning process on thin film for High-Reliability (Hi-Rel) Microwave Integrated Circuit (MIC) for space applications. This process fulfills RF/microwave properties like EM wave transmission/radiation, electrical conductivity, interconnection, corrosion protection, solderability, bondability etc. and making them a good base for mechanical strength along with thermal conductivity and thermal coefficient of expansion (TCE) matching with carrier plate on which substrate needs to be assembled.

These processes are qualified up to critical dimension (CD) of 100 micron for space use with very tight tolerances after subjecting to various tests like visual inspection, metal adhesion test, environmental tests etc. confirming to ISRO PAX-305 and MIL standards.

The salient features of the technology include process repeatability, patterning accuracy, defect density control and adhesion as per ISRO PAX- 305 to ensure better yield. Presently, the developed process is being utilized for fabrication of subsystems for communication and navigation projects.

Essential Infrastructure Requirements:

- Yellow Room of Class 100
- Clean room of Class 10000 and LAF for class 100 type
- Stereo Zoom Microscope up to 100X magnification
- Wet processing work station
- Ultrasonic/Mega sonic cleaner
- Convection/Clean Air Oven/Hot plates

Material Requirements:

- Mask /Photo Film
- Metalized Alumina substrates (Coorstek make superstrate - 996 or equivalent).
- Cr-Cu-Au Metallization on both sides of substrates.
- Metallization thicknesses:
 - Adhesion layer [Cr]: 200-250Å
 - Conductor [Cu]: 4.5 ± 0.5 μm
 - Passivation layer [Au]: 1.5 ± 0.5 μm
 - Total Metallization thickness: 5-7 μm
- Sheet Resistivity: < 0.006 ohms/square or better.
Consumables Required:

- Cleaning solvents of electronic grade (EL): Trichloroethylene (TCE), Neutra-Clean 7, Dry IPA, Acetone and DI water (Resistivity > 5MΩ etc.)
- Photoresist: LPR E-1020, All resist AR N-4300
- Etchants: I₂, KI, NaOH, K₃Fe(CN)₆
- Lint free tissue paper, cotton, scraper etc.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Low Temperature Co-fired Ceramics (LTCC)
circuit fabrication for satellite payloads

Space Applications Centre (SAC), Ahmedabad is a leading R&D Centre of Indian Space Research Organisation (ISRO) and is responsible for development and realisation of ground as well as satellite hardware required for various Communication, Navigation as well as Remote Sensing satellites.

SAC has well established and space qualified Low Temperature Co-fired Ceramics (LTCC) facility for the fabrication of High-Rel circuit and packages for various satellite payloads. SAC is also involved in the development of 3D integration and packaging for new applications.

Salient features of LTCC technology includes multilayer integration, embedded passives, easy hermetic sealing. It provides excellent SiP technology for integration of many technologies and devices for space applications.

Essential Infrastructure Requirements:

- Clean room of Class 10,000
- Mechanical punching equipment
- Stencil and screen printer
- Hot air convection oven
- Stacker
- Isostatic laminator
- Sintering furnace
- Dicing equipment
- Microscope

Preferable Infrastructure Requirements:

1. Stencil & screen manufacturing facility
2. Characterization tools
 - Tension meter
 - Four probe Sheet Resistivity meter
 - Density measurement tool
 - Flatness measurement tool
 - Stencil check system

Material Requirements:

- DuPont 951 tape system: tape thickness 5/10 mil & compatible gold conductor and vias fill paste
- Ferro A6ME tape system: tape thickness 5/10 mil & compatible gold conductor and vias fill paste

Technical Specifications:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Specification</th>
<th>SAC Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conductor width</td>
<td>Minimum 4±0.5 mil</td>
</tr>
<tr>
<td>2</td>
<td>Via dimension</td>
<td>Minimum 4 mil ±10%</td>
</tr>
<tr>
<td>3</td>
<td>Via separation</td>
<td>Minimum 2.5 D (D - hole diameter)</td>
</tr>
<tr>
<td>4</td>
<td>Cavities</td>
<td>Step, blind and through cavities</td>
</tr>
<tr>
<td>5</td>
<td>Tape system</td>
<td>Ferro A6ME & DuPont 951</td>
</tr>
<tr>
<td>6</td>
<td>Maximum metal density</td>
<td>50% in all layer</td>
</tr>
<tr>
<td>7</td>
<td>Tape size</td>
<td>6.5" X 6.5", (8" X 8")</td>
</tr>
<tr>
<td>8</td>
<td>Metal scheme</td>
<td>All gold</td>
</tr>
<tr>
<td>9</td>
<td>Number of layers</td>
<td>10 & more</td>
</tr>
</tbody>
</table>
The developed product shall undergo extreme testing as per ISRO qualification standards and can be qualified for the space use only after successful completion of the testing. ISRO offers to transfer LTCC fabrication technology to industries in India with adequate experience and facilities. Enterprises interested in obtaining know-how may write giving details of their present activities, infrastructure and facilities to the following address:

NewSpace India Limited (NSIL)

Email: contact-nsil@isro.gov.in
Black Anodizing On Aluminum 6061T6 & Chromating Technology

Space Applications Centre (SAC) of ISRO has developed electroplating processes for space hardware to achieve required surface engineering properties like EMI/EMC, electrical conductivity, non-conductivity, corrosion protection, solderability, emissivity and making a good base for Thermal Control Coatings. These processes are qualified for space use with very tight tolerances and subjected to various tests like visual inspection, adhesion test, environmental tests, and engineering property specific tests confirming to ASTM and MIL standards.

SAC has developed Black anodizing on Aluminum 6061-T6 alloy process which will find commercial and industrial applications. The black anodizing on aluminum alloy components such as boxes, cavities, posts etc. are used for optical as well as communication payloads. This coating is corrosion resistant has

- emissivity > 0.9
- solar absorptance > 0.93
- optical reflectance < 1%

Electrolytic black anodizing is a two-step process where anodizing is carried out in step 1 and step 2 involves electrolytic coloring. It has very good color fastness and optical properties. It is regularly used on satellite.

Components for satellites, at times, require bare white anodizing for corrosion protection only and at times need yellow chromating for basic protection of Aluminum with conductivity. There are instances where some part of the components need chromating for conductivity and other need black anodizing for emissivity.

Plating Specifications
Black anodizing thickness: 25 ± 3 microns

Pre-requisites
- Basic Electroplating know-how
- Electroplating set up including electrolytic baths, chilling plants, power supplies etc.

Applications
- Decorative
- Engineering / Industrial
- To enhance the emissivity and corrosion resistance of Aluminum alloy components.

Technology Transfer from ISRO
ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre of Indian Space Research Organization at Ahmedabad has developed an omni-purpose thin coating which can be applied easily on any substrate to obtain benefits in terms of fire retardant. This coating overcomes many of the limitations of commercially available paints.

Potential Applications:
It can protect almost all type of materials. Hence, it may find applications in all type of finishing materials like wall paneling, false ceiling, doors, windows, walls. Its versatility makes it suitable for use in restaurants, hotels, hospitals, schools, Airports, shopping malls, metro stations, Bus hubs, Commercial buildings as well as personal residence.

Advantages
✓ Provide two types of protections-fire resistance, flame retardant
✓ Has good adhesion to all surfaces
✓ Aesthetically appealing, can be mixed with any paint without loss of its fire retardant property
✓ Suitable for both indoor & outdoor use. Post curing will not wash off with rain water.
✓ Superior fire, thermal protection benefits.

Special features:
✓ Can be applied as thin coating on any surface.
✓ Can be applied over existing surfaces after fire exposure.
✓ No surface preparation required except cleaning of dust and oil.
✓ Can protect from any mode of fire. Sustains high temperatures
✓ Saves substrates up to 50% after fire.
✓ Reduces moisture absorption by 50%

Mode of application:
Can be applied like plaster by trowel. Any extensive training for application not required.

Other Features:
✓ Good adhesion of the coating facilitates vertical and overhead application, minimizes clean up.
✓ Virtually free of maintenance, doesn't crack or deteriorate significantly with time.
✓ Dries to the touch approximately 2 to 4 hours after application and cures thoroughly in 48 hours in ambient temperature.

Technical Specifications
Total Solids : 40 – 50%
Color : Whitish Grey.
Specific Gravity : 1.29 gm/cc.

Coated v/s bare wood specimen at 400°C
Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Gold Plating on Aluminium 6061 T6 and Kovar

Space Applications Centre (SAC) has developed and qualified a robust gold plating process on Aluminium 6061T6 and Gold plating on Kovar for space use. These processes are qualified for space use with very tight tolerances on various process parameters after subjecting to various tests like visual inspection, adhesion test, and environment tests, and engineering property specific tests conforming ASTM and MIL standards.

Aluminum is gold plated for its unique combination of physical, chemical and electrical properties. The high electrical conductivity of gold, low contact resistance and good solderability combined with the consistency of these properties over wide range of environment conditions experienced by satellite makes gold plating the ideal choice for plating electronic hardware.

Kovar is used to fabricate carrier plates which act as support for MICs for use in communication payloads.

Specifications

Gold Plating on Aluminum 6061T6

- **Undercoat**: Nickel-Phosphorous (Electroless Nickel)
- **Composition of undercoat**: Nickel – Phosphorous (8-12%)
- **Undercoat thickness**: 10-12µ
- **Topcoat**: Gold (Electroplating)
- **Type of Gold Plating**: Acidic Gold Potassium Cyanide
- **Purity of Gold**: 99.99%
- **Thickness of Gold plating**: 2.5±0.5µ

Gold Plating on Kovar

- **Undercoat**: Nickel (Electroplating)
- **Undercoat thickness**: 3-4µ
- **Topcoat**: Gold (Electroplating)
- **Type of Gold Plating**: Acidic Gold Potassium Cyanide
- **Purity of Gold**: 99.99%
- **Thickness of Gold plating**: 2.5±0.5µ

SALIENT FEATURES

- This process is developed after undergoing intense qualification plans and tests to withstand harsh space-like conditions
- Acidic gold potassium cyanide plating process
- Easy to control and maintain
- Optimized for uniform and dense thickness

APPLICATIONS

Gold plating is used in space grade mechanical components (Electronics circuit housing boxes, carrier plate etc). In electronics, gold plating is used to provide a corrosion-resistant electrically conductive surface. It is also used extensively in semiconductor industry e.g. in electrical switch contacts, connector pins and barrels and other applications where intermittent electrical contact occurs. Gold plating is generally practiced in aerospace applications.
Space Applications Centre (ISRO) is in the field of Microwave Integrated Circuits fabrication for communicational, remote sensing and navigational payloads. SAC has developed the process of Cr-Cu-Au (Chromium-Copper-Gold) metallisation on both sides (top and bottom side) of Alumina substrates using Magnetron sputtering techniques. The base material for MIC fabrication is dielectric ceramic viz. alumina on which the metallisation is to be carried out for MIC patterning.

The salient features of the technology include process repeatability, adhesion, uniformity, and compact structure of deposited thin film. The metallisation is expected to withstand environmental tests and demonstration of compatibility with further processes like pattern engraving and assembly and packaging. Presently, the developed process is utilised for fabrication of subsystems for ongoing IRNSS, GEOSAT and SCATSAT project activity.

Essential Infrastructure Requirements:
- Clean room of Class 100 type
- Magnetron sputtering system with three cathode/sputter gun configuration
- Ultrasonic cleaner
- Vapour degreaser
- Stereo Zoom Microscope up 100X magnification
- DI water plant

Preferable Infrastructure Requirements:
- Thin film characterisation tools like
 - High resolution Microscope upto 1000X magnification
 - Four probe Sheet Resistivity meter
 - Muffle Furnace
 - Adhesion tester

Material Requirements:
- Alumina substrates (Coorstek make superstrate-996 or equivalent)
- High purity sputtering Targets of Cr, Cu & Au
- High purity Argon gas
- Cleaning solvents of electronic grade like Acetone, TCE, IPA, HCL, Ammonia, DI water etc.

Technical Specifications:
- Substrate: Alumina substrates
- Metallisation scheme:
 - Cr : ~ 300 Angstrom
 - Cu: 4 to 4.5 micrometer
 - Au : 2 to 2.5 micrometer
- Total thickness: 5 to 7 microns
- Uniformity : ± 10% on single substrates ± 20% batch to batch
- Metallisation required on both sides of substrates
- Sheet Resistivity: < 0.006 ohms/square

The developed product shall undergo extreme testing as per ISRO qualification standards and can be qualified for the space use only after successful completion of this testing.

ISRO offers to transfer this technology of Cr-Cu-Au metallisation on alumina substrates by Magnetron.
sputtering techniques for MIC fabrication to industries in India with adequate experience and facilities. Enterprises interested in obtaining knowhow may write giving details of their present activities, infrastructure and facilities to the following address.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre of Indian Space Research Organization at Ahmedabad has developed a method to carry out silver plating from inside in aluminum waveguides. It is a difficult task to plate due to the complexity and shape of the component. The purpose of this process is to get uniform deposition throughout the inside & outside surfaces of the component.

Silver plated waveguides are used in various communication payloads like GSAT, RISAT etc. Silver plating on Aluminum waveguides is required to obtain good RF performance, as silver gives the best known electrical conductivity and also is solderable.

Most commonly used space qualified paints are available normally in two colors, Black and White. Thermo-Optical properties of Thermal Control Coatings usually carried out are as per details given below:

The plated parts should be free of pits, nodules, blisters & roughness on the components. It should pass environmental tests like heat resistance, humidity, thermal cycling, thermo vacuum etc.

Plating Specifications

- **Electro less Nickel plating thickness**: 6 to 8 microns
- **Silver plating thickness**: 5 to 8 microns

Pre-requisites

- Basic Electroplating know-how
- Electroplating set up including baths, anodes, supplies etc

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre of ISRO has qualified the process of thermal control coating for spacecraft subsystem component made of different materials such as Anodized Aluminum, Chromated Aluminum, Bare Aluminum, Electroless Nickel plated Invar, Bare Invar, Silver plated Aluminum, Chromated Magnesium, Black anodic coated Magnesium etc for space use. Black paint is commonly utilized on the interior of the satellite, to facilitate radiant heat transfer among internal components.

Most commonly used space qualified paints are available normally in two colors, Black and White. Thermo-Optical properties of Thermal Control Coatings usually carried out are as per details given below:

<table>
<thead>
<tr>
<th>Coating Type</th>
<th>Emissivity ((\varepsilon))</th>
<th>Solar Absorptive ((\alpha))</th>
<th>(\alpha/\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0.90</td>
<td>0.90</td>
<td>1.00</td>
</tr>
<tr>
<td>White</td>
<td>0.85</td>
<td>0.20</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Terminal Specifications
- Total Mass Loss (TML): \(\leq 1.0\%\)
- Color: Black and White
- Appearance: Flat / Matt finish
- Dry Film Thickness (OFT): 50 Micron to 70 Micron
- Collected Volatile Condensable Material (CVCM): \(\leq 0.1\%\)

Pre-requisites
- Painting know-how
- Conditioned Thermal painting booth
- Qualified paints, guns etc.

Technology Transfer from ISRO
ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Flameproofing Coating-Caspol

Introduction

CASPOL (Ceramic-Polymer hybrid) is a water based, ready-to-coat and easy-to-use flame proof coating having both societal and advanced end-use applications. It confers excellent flame retardant, waterproofing and thermal control properties to substrates ranging from masonry surfaces, textiles, paper, thatched leaves, wood etc. to advanced materials like polyurethane and phenolic based thermal insulation foam pads.

Salient features of CASPOL are:
1. No liquid or vaporizable material (except water)
2. Human and eco-friendly
3. Brushable and sprayable
4. Low cost

Description

CASPOL is a room temperature curable, water based formulation having self-extinguishing properties, good adhesion and water repellency characteristics. It is based on ceramic composition dispersed in an aqueous polymeric emulsion containing flame retardant components. All the ingredients are dispersed in water to get a suspension of the required viscosity for application by brushing or spraying. It is having limiting oxygen index (LOI) above 40. The material coated with CASPOL will be self-extinguished within 4 seconds after removal of flame. It is also having good adhesion to the substrate surface both in the dry condition and after exposing the coated forms in water shower. Foam materials can be impregnated with CASPOL by dip coating.

Fig. 1 Model huts made of thatched coconut leaves set to fire. (Left)-Hut without CASPOL coating gutted completely in fire within a few seconds whereas CASPOL coated hut remained intact even in fire.

Fig. 2 Images of commercial polyurethane foams set to fire. (Left)-foam without CASPOL impregnation burned completely in fire within a few seconds whereas CASPOL impregnated foam (right) remained intact even in fire.
Applications of CASPOL

1. **Launch vehicle:** CASPOL is a flame proof coating, giving the required flame retardant properties to thermal protection foam pads used in Launch Vehicles.

2. **House hold:** CASPOL can be applied over thatched leaves of the cottage roof to flameproof it in addition to increasing the life of such roofing of households, so that periodicity of the maintenance and replacement can be reduced significantly. Application of CASPOL reduces the temperature inside the room and prevents water leakage. The low solar absorptivity (0.20%-0.40%) and high emissivity make it a good temperature controller in sunny weather.

3. **Waterproofing/thermal control of concrete:** CASPOL can be applied over the concrete surface of a building to prevent water seeping. The high emissivity keeps the building cool by at least 5 to 6°C less. After the application of CASPOL, water seepage problems will not be felt as CASPOL pots micro cracks and holes.

4. **Railways and automobiles:** CASPOL can be used as a flame retardant material in railways and automobiles where the seat cushions can be made flameproof using this material, without affecting the cushioning characteristics significantly.

5. **Foams In Public Transport:** If the foam materials used in passenger seats are rendered flameproof, fire accidents can be reduced to a large extend. Since flame proofing of foam materials using CASPOL can be achieved through less expensive processes, there is considerable market potential for CASPOL in Indian foam market.

<table>
<thead>
<tr>
<th>Properties</th>
<th>CASPOL- alone</th>
<th>CASPOL coated PIPheno/ Polyurethane</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOI, %</td>
<td>32-42</td>
<td>32-42</td>
</tr>
<tr>
<td>Solar absorptance</td>
<td>0.20-0.40</td>
<td>0.20-0.40</td>
</tr>
<tr>
<td>Adhesion tape test at RT</td>
<td>N/A</td>
<td>pass</td>
</tr>
<tr>
<td>Oxyacetylene flame test, time for extinction, sec</td>
<td>N/A</td>
<td>≤ 4 sec</td>
</tr>
<tr>
<td>Ignitability</td>
<td>N/A</td>
<td>Not easily ignitable</td>
</tr>
<tr>
<td>Surface spread of flame</td>
<td>N/A</td>
<td>Class 3</td>
</tr>
<tr>
<td>Heat release rate</td>
<td>N/A</td>
<td>53.83 kW/m²</td>
</tr>
<tr>
<td>Fire propagation index</td>
<td>N/A</td>
<td>17.97</td>
</tr>
<tr>
<td>Sensitization to skin</td>
<td>No sensitization</td>
<td>N/A</td>
</tr>
<tr>
<td>Irritation to skin</td>
<td>Non-irrant</td>
<td>N/A</td>
</tr>
<tr>
<td>Toxicity</td>
<td>Cytotoxic</td>
<td></td>
</tr>
</tbody>
</table>
CASPOL can also be used for flame proofing foam materials used in auditoriums and cinema halls where chances of fire related accidents are high.

VSSC is willing to offer the technology of CASPOL to capable and interested parties who are in the field of manufacturing similar items.

Interested entrepreneurs are requested to contact the address given below with all relevant particulars regarding their line of current activity, infrastructure available, market assessment of the product, financial arrangements strength of the company, turn over and sales of their products for the past few years and a copy of their latest annual report.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Corrosion Resistant Coating NRCM-204

NRCM-204 is a corrosion resistant coating material for metals and composites to protect from various environments like nitric oxide, dinitrogen tetroxide (N_2O_4), mixed oxides of nitrogen, concentrated nitric acid ($Conc.HNO_3$) etc. The system is comprised of inorganic-organic hybrid network consisting of hydroxy siloxane, epoxy-amine based alkoxysilanes, cristoballite silica. Complete curing of the system is achieved by simultaneous curing of epoxy-amine and hydroxy siloxane-alkoxysilane in presence of tin based catalyst.

Salient Features

- Ambient temperature curing
- Corrosion resistant material to protect from harsh oxidizing environment

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSS (Al/Al) at RT, ksc</td>
<td>10</td>
</tr>
<tr>
<td>Tensile strength, ksc</td>
<td>5</td>
</tr>
<tr>
<td>Tensile Modulus, ksc</td>
<td>5 to 15</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>70 to 120</td>
</tr>
<tr>
<td>Dip test of coating in Conc. HNO₃ for 3 days</td>
<td>No Peel off</td>
</tr>
</tbody>
</table>

Applications

NRCM-204 offers a highly corrosive resistant coating which can be coated over metals and composites for almost all type of corrosion which includes various acids. Conventional polymeric materials will not withstand such a highly corrosive environment.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Silicone polymer based thermal protection system: PC-10 TPS (Red) and (White)

Pc-10 thermal protection systems are silicone polymer based filled compounds, which are good ablative thermal insulators. These compounds are room temperature curing systems which can be applied by brushing, spraying and putty blade. The remarkable features of the system include good thermal, chemical and ageing resistance and compatibility with wide variety of substrates. Indian Space Research Organisation (ISRO) at its Vikram Sarabhai Space Centre (VSSC) has developed a technology for processing and application of different types of silicone polymer based thermal protection systems with tailored properties to meet various mission/application requirements.

The processing involves incorporation of selected quality fillers and ingredients in specific type of silicone polymer resin and use of suitable curatives to achieve desired thermo-physical properties.

Salient Features

- Simplified and cost-effective technology for processing premium quality ablative thermal protection systems
- Overnight, room temperature curing system.
- Flexibility with respect to application procedure such as spraying, brushing or putty application.
- Compatibility with wide variety of substrates including metals, composites, glass etc.
- Excellent ageing behaviour and hydrophobicity, making it suitable for long term application with no deterioration of properties for more than 5 years.

Applications

- Useful for high quality ablative thermal protection system for temperatures up to 350°C direct exposure with reasonable stability and capability to retain properties. The system also has good moisture resistance and good age resistance. The system can be applied to desired thickness depending upon the thermal environment envisaged. Reasonable mechanical strength and adhesive properties with large number of substrates has been demonstrated by the system. Ability to retain properties at temperatures up to 150°C and low temperature flexibility are other highlights of the system owing to the low glass transition characteristics associated with silicone polymers.
- The products can be used for thermal protection application for protecting rocket hardware form aerodynamic heating and launch pad components from flame impingement and also as moisture / water impermeable coating etc.
- The system can be tailored for use as corrosion protection coating on metal substrates for outdoor use.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs/industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Vikram Sarabhai Space Centre has developed a good number of specialty coatings to meet the specific requirements in Launch Vehicles and Satellites. These coatings may also find various industrial applications.

HESC/CSNM-29 is one such special coating system developed as a high temperature resistant enamel coating. This coating finds application as a high emissive topcoat on ablative surfaces. It is also used as a high emissive and thermal insulative coating on the PCB sensor cards for GPS Radiosonde studies. This room temperature curable silicone based coating system contains special inorganic fillers, which imparts high emissivity to the system. Other applications could include anticorrosion and weather/rain proof coating on metallic substrates. The coating is weather and high temperature resistant and lasts for long.

Typical Properties / characteristics:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>Property Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part A</td>
<td>White, viscous</td>
</tr>
<tr>
<td>Part B</td>
<td>Transparent liquid</td>
</tr>
<tr>
<td>Ford cup viscosity (Ford cup No. B 4)</td>
<td>20-40 sec. after diluting with 200 ml toluene</td>
</tr>
<tr>
<td>Adhesion tape test</td>
<td>No peeling from substrate</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
FB-CVI for realisation of C-C Composite

Indian Space Research Organisation (ISRO) at Vikram Sarabhai Space Centre has developed Film Boiling Chemical Vapour Infiltration (FB-CVI) technology for realisation of Carbon-Carbon Composite products. Carbon-Carbon composites materials possess excellent thermo-mechanical properties apart from excellent ablation and erosion properties, which are prerequisite for numerous high temperature applications. In addition, Carbon-Carbon Composites possesses ideal characteristics of low density, tailorable thermal conductivity, high heat absorption capacity, dimensional stability at high temperature, tribological properties and biocompatible characteristics making it suitable for a wide spectrum of applications. The process of FB-CVI enables realization of Carbon-Carbon Composite products through a faster process methodology and is adaptable for manufacturing of C-C Composites products for diverse applications.

Salient Features of Film Boiling CVI process Technology

2. Faster densification process (2-3 mm/hr) for realization of Carbon-Carbon Composite products.
3. Less parametric sensitive making the process robust and reliable.
4. Flexibility for realization of 2D, 2.5D & 4D C-C composite based products.
5. Realisation of Carbon-Carbon Composite products through a single process cycle.
6. Closed loop circulation of precursor thereby minimizing pollution aspects.

Applications

Carbon-Carbon Products realized through Film Boiling CVI process can have wide spectrum of applications, considering high thermal shock resistance, capability of retaining mechanical strength at elevated temperatures and other characteristics of the material.

Technology transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs/industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Pulse Hard Anodization Process

Hard anodizing process produces a thick ceramic like coatings on Aluminum and its alloys. The micro hardness of the coating is more than 250 HV. These dense anodic coatings are usually thick by normal anodizing standards, and they are produced using special anodizing conditions. The thickness range is usually between 25 and 250 µm. The hard anodic oxide coatings produced under special conditions have high hardness values and very good abrasion resistance compared to normal anodic coating.

Features

• Pulse hard anodizing process is carried out at +10°C compared to conventional hard anodizing process, which is carried out at -5°C, thus saving a considerable cooling load.
• The burning and powdering problems associated with conventional hard anodizing process are eliminated

Applications

• Hard anodic oxide coatings find application in the engineering industry for components where abrasion resistance is the required primary characteristic of the coating. For Ex:
 • Automobile Industry (Pistons, Cy,inders, Hydraulic gears)
 • Aerospace Industries (Variety of components like sliding/rotating mechanisms with solid lubricants, Thermal barrier coating, Thermal control coating etc.)
 • Chemical and flame resistant surfaces
 • Cooking utensils
 • Highly insulating (electrical) dielectric coating
Processing Parameters

<table>
<thead>
<tr>
<th></th>
<th>Conventional Hard Anodizing</th>
<th>Pulse Hard Anodizing</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>-5 ±2</td>
<td>10 ±2</td>
<td>• Considerable saving in cooling load and cost.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Solution conductivity is better and permits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>higher current density processing.</td>
</tr>
<tr>
<td>Current Density(A.ft-2)</td>
<td>35 ±5</td>
<td>45 ±5</td>
<td>• Faster, better and harder coating</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>24 -90</td>
<td>16 - 32</td>
<td>• Heating at the interface of Component & electrolyte is eliminated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Burning problem is eliminated</td>
</tr>
<tr>
<td>Time (min)</td>
<td>80 -120</td>
<td>40-60</td>
<td>• The time taken to build up a thickness of 50-70 microns is halved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Results in harder coating without powdering.</td>
</tr>
</tbody>
</table>

Properties of the Coating

<table>
<thead>
<tr>
<th></th>
<th>60±10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microhardness (HV)</td>
<td>250-350</td>
</tr>
<tr>
<td>Insulation value</td>
<td>30-2.5 GΩ</td>
</tr>
<tr>
<td>Coff. Of friction</td>
<td>0.3 to 0.5</td>
</tr>
<tr>
<td>Corrosion resistance (R_c in Ω . cm²)</td>
<td>18.7 X 10⁶</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Anodising on Titanium Alloys

U R Rao Satellite Centre (URSC) of Indian Space Research Organisation (ISRO) has developed anodizing process for Titanium and its alloys to impart corrosion resistance and multicolored aesthetic appearances used for colour coding applications.

Salient Features

Anodising on Titanium alloys imparts a coloured aesthetic appearance to the base alloys. It is used as corrosion resistance coating as well as aesthetic architectural material in construction industries.

Typical Properties / characteristics:

<table>
<thead>
<tr>
<th></th>
<th>APPEARANCE</th>
<th>UNIFORM COATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>≅ 500 Å</td>
<td></td>
</tr>
<tr>
<td>IR Emittance (ε_{IR})</td>
<td>≅ 0.25 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>Solar Absorptance (α_{s})</td>
<td>≅ 0.70 ± 0.05</td>
<td></td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Pulse Hard Anodising

U R Rao Satellite Centre (URSC) of Indian Space Research Organisation (ISRO) has developed pulse hard anodizing process on Aluminium alloys. The hard anodic oxide coatings produced under special conditions have high hardness values and very good abrasion resistance compared to normal anodic coating. Hard anodic oxide coatings find application in the engineering industry for components where abrasion resistance is the required primary characteristic of the coating.

Salient Features

Pulse hard anodizing process is carried out at +10 °C compared to conventional hard anodizing process, which is carried out at -5 °C, thus saving a considerable cooling load. The burning and powdering problems associated with conventional hard anodizing process are eliminated.

Major Specifications

<table>
<thead>
<tr>
<th>Thickness (microns)</th>
<th>ASTM-B-244 Eddy Current Method</th>
<th>60±10 Micron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microhardness (HV)</td>
<td>ASTM-E 384, Diamond Indenter</td>
<td>250 - 500</td>
</tr>
<tr>
<td>Insulation Value (Electrical)</td>
<td>10-100 V Range, DC</td>
<td>30 - 1.5 GΩ</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Nanoparticle (Silver & Gold) coating on Aluminum

Space Applications Centre (SAC) has developed and qualified a robust Nanoparticle (Silver & Gold) coating on Aluminium 6061T6. The high electrical conductivity of gold, low contact resistance and good solderability combined with the consistency of these properties over wide range of environment conditions experienced by satellite makes gold plating the ideal choice for plating electronic hardware. Nano particle size is in the range of 25-50 nm. The nano silver plating on aluminum alloy components such as RF filters improves surface conductivity and hence reduces the insertion losses. The process is used for components like waveguides, adaptors, HRFs, filters etc. Silver plated waveguides are used in communication payloads of satellites. Nano Silver plating on Aluminum is optimized to give better RF performance as compared to traditional silver plating. Nano Silver coating provides high luster, electrical conductivity near to pure silver and is solderable. Indoor humid environment tarnish resistance is achieved by nano deposition.

Applications area
- Engineering / Industrial
- To enhance the electrical conductivity of the surface

Specifications:

<table>
<thead>
<tr>
<th>Gold Nano Plating on Aluminum 6061T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undercoat</td>
</tr>
<tr>
<td>Nickel-Phosphorous (Electroless Nickel)</td>
</tr>
<tr>
<td>Composition of undercoat</td>
</tr>
<tr>
<td>Nickel – Phosphorous (8-12%)</td>
</tr>
<tr>
<td>Undercoat thickness</td>
</tr>
<tr>
<td>10-12 µ</td>
</tr>
<tr>
<td>Topcoat</td>
</tr>
<tr>
<td>Gold (Electroplating)</td>
</tr>
<tr>
<td>Type of Gold Plating</td>
</tr>
<tr>
<td>Acidic Gold Potassium Cyanide</td>
</tr>
<tr>
<td>Purity of Gold</td>
</tr>
<tr>
<td>99.99%</td>
</tr>
<tr>
<td>Thickness of Gold plating</td>
</tr>
<tr>
<td>2.0±0.5µ or 1.0±0.2µ</td>
</tr>
</tbody>
</table>
Silver Nano Plating on Aluminum 6061T6

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Undercoat</td>
<td>Nickel-Phosphorous (Electroless Nickel)</td>
</tr>
<tr>
<td>Composition of undercoat</td>
<td>Nickel – Phosphorous (8-12%)</td>
</tr>
<tr>
<td>Undercoat thickness</td>
<td>8-12 µ</td>
</tr>
<tr>
<td>Topcoat</td>
<td>Silver (Electroplating)</td>
</tr>
<tr>
<td>Type of Silver Plating</td>
<td>Basic Silver Potassium Cyanide</td>
</tr>
<tr>
<td>Thickness of Silver plating</td>
<td>7.0±2.0µ</td>
</tr>
</tbody>
</table>

Salient Features

- Processed developed after undergoing intense qualification plans and tests to withstand harsh space-like conditions.
- Highly stable cyanide based chemistry.
- Easy to control and maintain.
- Optimized for uniform and dense thickness with liberal process parameters range.
- Undercoat of electroless nickel for better corrosion protection of aluminum.
- Silver nano particle coating resistant to indoor humid environment tarnish effects tested as per ASTM B809.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Nano-Structured Metal Deposition by Electroplating Method for PCB required for Space Application

Space Applications Centre (SAC) has developed Nano-Structured Metal Deposition by electroplating method for PCB. This technology ensures the deposition of <100 nm copper and gold metal deposition by electroplating method for RF/Microwave PCB circuits fabrication. Nano crystalline and ultra-fine grain deposited copper by this technology can potentially offer improved reliability and functionality to the PWB. Secondly Nanocrystalline deposition significantly contribute for the isotropic etching characteristics of copper during the lithographic etching process, hence wiring density can be increased through grain size reduction. Nano soft gold plating deposit provides an extremely pure deposit of gold and non-porous coating.

Applications area

- PTH Gold plated PCBs for RF/Microwave applications.
- MLBs with high aspect ratio boards.

Salient features

With this technology it is possible to etch 100-micron track width and spacing. Moreover, fabrication process passes through all qualification tests including following environmental and functional tests.
<table>
<thead>
<tr>
<th>Salient features</th>
<th>139</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Storage</td>
<td>125 °C – 168 Hours</td>
</tr>
<tr>
<td>Thermal Cycling</td>
<td>- 65 °C – 10 min., +125 °C</td>
</tr>
<tr>
<td></td>
<td>- 10 min., No. of Cycles: 200 (100 + 100)</td>
</tr>
<tr>
<td>Humidity</td>
<td>- 40°C ± 2°C 90 – 95 % RH for 21 days</td>
</tr>
</tbody>
</table>

1mil Wire, 5/10/20mil Ribbon Bonding (5 bonds of each) using parallel gap method

Broad Specifications
- Copper nano deposition < 100 nm
- Gold nano deposition < 100 nm

Process Schematic diagram

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Electroless Nickel Electroless Palladium Immersion Gold (ENEPiG) Process for Printed Circuit Boards

Space Applications Centre (SAC) has developed Electroless Nickel Electroless Palladium Immersion Gold (ENEPiG) surface finish is most suitable surface finish. Here palladium is added between electroless nickel and immersion gold as shown in fig. Palladium layer plays a role in stopping immersion gold technology from corroding nickel layer. As a result, ENEPIG is capable of defeating the defect of black pad held by ENIG. Moreover, ENEPIG provides planner solderable finish, Al and gold wire bondable, nickel strengthen the PTH, Nickel barrier prevent the copper dissolution during thermal exposure, it has good shelf life and does not tarnish. This process overcomes some of the limitations of Hot Air Solder levelling and electrolytic gold types of surface finish, being used for digital/analog and RF/Microwave applications.

Applications area
- PPTH Gold plated PCBs for RF/Microwave applications.
- MLBs with high aspect ratio boards.

Salient features
Optimised fabrication process is passes through all qualification tests including following environmental and functional tests.
- Hot Storage: 125 ºC – 168 Hours
- Thermal Cycling: - 65 ºC – 10 min., +125 ºC – 10 min., No. of Cycles: 200 (100 + 100)
- Humidity: - 40ºC ± 2ºC 90 – 95 % RH for 21 days
- 1mil Wire, 5/10/20mil Ribbon Bonding (5 bonds of each) using parallel gap method
Broad Specifications

- Immersion Gold layer thickness: 0.07 to 0.15 µm
- Electroless Pd layer thickness: 0.1 to 0.30
- Electroless Ni layer thickness: 3 to 5 µm

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Gold Plated PTH / NON PTH PCBS
on PTFE Based Substrates For RF/ MM Wave Applications for Space and
Ground use

Product specifications

• Minimum hole dia 0.3 mm for serial no. 1,2, and 5
• Minimum hole dia 0.5 mm for serial no. 3 and 4
• Surface activation of PTFE based laminates.
• Soft gold plating
• Gold Overhang ≤ 10 micron
• Track width and spacing 130 micron
• Slot dimension 0.8 mm to 1.5 mm

Salient Features

Laminate types: Process is capable to fabricate space qualified PCBs on following types of substrates, with thickness varies from 10 mil to 25 mil.

1. RT Duroid 6002 ½ / ½ Cu
2. RT Duroid 6010 ½ / ½ Cu
3. RT Duroid 6002 ½ / 1mm Cu
4. RT Duroid 6010 ½ / 1 mm Cu
5. TMM10i

Approximate Work Load Per Year

• 800 to 1000 PCBs for on-board
• 1000 to 1200 PCBs for ground applications

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre of Indian Space Research Organization at Ahmedabad has developed a Precision Tapping Attachment which is much useful for precision tapping in mechanical packages. This attachment is useful for tapping of highly precise M1.2 screws and onwards with accuracy.

Salient Features
1. Useful for highly precise M1.2 screws and onwards with accuracy.
2. To ensure for perfect and precise tapping with perpendicularity.
3. Ensuring tapping up to proper depth.
4. No jamming or breaking of tapping tool.
5. Even unskilled worker can also use it.
6. Increasing in productivity.

Technical Specifications
- **Tapping Capacity**: Starting form highly precise M1.2
- **Overall Size**: 345 mm x 300mm x 330 mm height
- **Swiveling of arm**: 360°
- **Vertical Adjustment**: Easily possible up to 300 mm
- **Horizontal Adjustment**: In range of 50 mm, Maximum Distance 215 mm
- **Tapping Operation**: Manually
- **Overall Weight**: 9 kg
- **Tools**: Standard tools can be used
- **Extension**: Extendable for Helicoil insertion and semi-automation for vertical feed and lubrication

Technology Transfer from ISRO
ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Vibration Management Solutions
Manages motion-Minimizes vibration, shock and noise

- Developed by Space Applications Centre, ISRO, Ahmedabad.
- Delicate electronic and optical systems which are vulnerable to vibration and shock can be protected from these.
- This Vibration Management Solutions (SVMS) solves vibration and shock difficulties during transportation on ground and space.
- SVMS systems are based on wire rope mounts that provide inherent damping by virtue of relative motion between wire strands.
- Wire rope isolators usually can accommodate large deflections without the danger of bottoming and plastically deforming, hence offers a wide range of isolation to a variety of applications.

SVMS Types:
- SVMS Quad-Fed
- SVMS Tri-Fed
- SVMS Hex-Fed
- SVMS Platform

Salient features
- All metal construction
- High inherent damping
- Wide Temperature Range – 100-200˚C
- Maintenance Free
- Corrosion Resistant
- Multidofs

Potential Application Areas
- Space Missions Payload Systems and instruments
- Delicate systems Suspension in planetary Landers
- Air / Road / Sea Transportation
- Foundation of Equipment
- Chemical Processing Equipment
- Seismic isolation

Realized AVS approaches

TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Supported mass (Gm)</th>
<th>Frequency range (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVMS Quad-Fed</td>
<td>400-3000</td>
<td>5-2000*</td>
</tr>
<tr>
<td>SVMS Tri-Fed</td>
<td><18</td>
<td></td>
</tr>
<tr>
<td>SVMS Hex-Fed</td>
<td><65</td>
<td>20-2000</td>
</tr>
<tr>
<td>SVMS Platform</td>
<td><240</td>
<td></td>
</tr>
</tbody>
</table>

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre (SAC) of Indian Space Research Organisation (ISRO) has developed an Innovative Process technology to fabricate Waveguide run from Thin Walled Rectangular Tubes having various cross sectional dimensions.

These waveguide runs are of various shapes & different lengths and are being used for making total waveguide plumbing line, by assembling the said waveguide runs through flanges welded at each end. The different shapes are being made by variety of bends & twists generated through forming process by working on straight tubes.

Technical Specification

Raw Material Details

<table>
<thead>
<tr>
<th>Form</th>
<th>Rectangular rolled tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Al. Alloy 6061-T6</td>
</tr>
<tr>
<td>Internal Surface Finish</td>
<td>1.6 Micron</td>
</tr>
</tbody>
</table>

Process of Joining of flanges with waveguide

Material	Al. Alloy 6061-T6
Internal Surface Finish	1.6 Micron
Thickness	1.2 mm to 0.635 mm
Quality*	RF Leak Proof

Applications

- Ground as well as Airborne Radar
- Transmission & Reception in range of Microwave frequencies
- Satellite based Communication System
- In the devices of Navigation Aids
- High power testing of Microwave system

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Sit on Umbilicals for remote Fluid servicing of Launch

Umbilicals are extensively used in the fields of aviation, space technology as well as automotives. Indian Space Research Organisation (ISRO) at its Liquid Propulsion Systems Centre has developed a compact and reliable sit on Umbilical which can be used for remote fluid servicing of Launch Vehicles.

Principle of operation

This innovation though is developed for a specified requirement (servicing the lower stage of launch vehicle) can be extended to various other applications. This system has a flight segment (part of vehicle) which sits over the ground segment (assembled to launch pedestal). The flight segment gets lifted off along with vehicle upward movement.

The system has got a pack of Belleville disc springs to take up longitudinal deflections and a twin spherical ball mechanism to transfer disc spring load to ground segment and also accommodate vehicle sway. Moreover, the system employs push open type check valves for fluid transfer in mated condition.

Specification

- Accommodate vehicle sway of +10mm
- Accommodate vehicle longitudinal deflection of 10mm in downward direction
- The ground segment & flight segment has to separate within 20mm of vehicle lift off.
- Automatic sealing devices should automatically close after vehicle lift off ensuring leak tightness both in mated and separated condition.
- External leak of SOU in mated condition \(\leq 1\times10^{-3}\) sccm/sec of GN2 at Room

Temperature

- Envelope of SOU should be minimum.
- Flight segment to have minimum aerodynamic load during flight.

Advantages and salient features

- Minimum assembly and test time required at launch pad.
- Provides completed testability & serviceability at launch pad.
- Simple concept of self sealing connectors
- Easy fabrication and testing
- Compact design
- Design allows easy de-mating when flight segment gets lifted off along with vehicle upward movement. No complex locking and separating mechanism.

Applications

- Servicing of military and commercial aircrafts
- Remote fluid servicing of missiles
- Oil rigging operations
- Automobile industry
- Chemicals and fertilizer industry handling toxic chemicals
- Locomotives
- Commercial gas (LPG) filling center

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Tool For Connector Pin & Teflon Trimming

Tool Features

- Teflon & pin trimming with ± 50 µm accuracy.
- No cut marks (Nicks) on pins
- Zero defect process output
- High throughput
- Motorized & simple tool, hence,
- person independent process

Application Area

- Patch Antenna, waveguide adaptor,
- Large numbers required in SAC.
- Probable co.: Astra AMPL
- Escc qualified fm grade

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Space Applications Centre of Indian Space Research Organisation has designed and developed a state of the art Video Imaging System called as “SVIS”. It is a space grade certified system that provides high resolution color images with higher frame rates.

SVIS consists of a CMOS based sensor, Camera, Digital card, DC-DC card along with Solid State Recorder. Solid State Recorder (SSR) is NAND flash based which is used to process high resolution image data transfer with higher frame rates. At present, this system is being used in the launch vehicles for capturing high resolution images with higher frame rates as and when required.

Salient Features

<table>
<thead>
<tr>
<th>S/N</th>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Detector</td>
<td>1600 x 1200 (2M) CMOS sensor</td>
</tr>
<tr>
<td>2.</td>
<td>FOV & depth of field</td>
<td>50 deg; 600 mm minimum</td>
</tr>
<tr>
<td>3.</td>
<td>Frame Size/ resolution</td>
<td>1600 x 1200 (Maximum)</td>
</tr>
<tr>
<td>4.</td>
<td>Frame Size</td>
<td>~30 Mb (Before compression)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~1.5 Mb (After compression)</td>
</tr>
<tr>
<td>5.</td>
<td>On-board Storage capacity</td>
<td>~ 2 – 4 Gb</td>
</tr>
<tr>
<td>6.</td>
<td>Output data rate</td>
<td>Commensurate with DROPS Protocol (400-500 Kbps)</td>
</tr>
<tr>
<td>7.</td>
<td>Power</td>
<td>< 7 W</td>
</tr>
<tr>
<td>8.</td>
<td>Frame Rate</td>
<td></td>
</tr>
</tbody>
</table>

Applications

- High resolution image data capture
- High frame rate data capture

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Optical Imaging System
An Advanced Technology from ISRO

- Useful under twilight and mid-day lighting conditions
- Sampling Resolution: 2cm at 5000 m
- FOV: 0.46° x 0.46°
- 200 mm RC Telescope
- Operating Wavelength range: Vis-VNIR
- Frame rate: 30 Hz (Rolling shutter)
- Programmable Exposure period
- Includes Focusing Mechanism
- Camera Head control, video data acquisition, NUC correction, and image visualization s/w with intra-scene dynamic range adjustment for 2kx2k Si based focal plane array
- Sturdy Mechanical Structure
- Weight: <10 kg

Potential Applications
- Imaging during day time and twilight condition
- Scientific Studies, Astronomy
- Applications requiring high intra-scene dynamic range up to 80 dB

Possible Customizations
- Multi-band (with frequency selective beam splitter or filter wheel), including Infrared spectrum, target imaging using suitable focal plane array
- Frame rate enhancement up to 100 frames/s
- Temperature compensated automatic focus adjustment
- RGB Color imagery with incorporation of color data processing pipe
- Nighttime imaging with external illuminator

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Film Adhesives EFA 1753 and EFA-1752
(Structural adhesives for honeycomb sandwich fabrication)

Vikram Sarabhai Space Centre of Indian Space Research Organization has developed an epoxy film adhesive; EFA-1753 (300 GSM) and EFA-1752 (200 GSM) (in the form of continuous film) that cures at elevated temperature 175 °C for 1 h and they possess good adhesive strength and filleting properties. Light-weight honeycomb sandwich structures are extensively made using epoxy film adhesives with precisely controlled glue line thickness. Film adhesive can also be used by shipping and boat manufacturing industries also, for fabrication of sandwich structures and other composite assemblies.

Salient Features

- One-component, heat curable, toughened, high strength polymeric film adhesive.
- Heat curable (175°C for 1 h).
- Ensures filleting during curing, leading to very high bond strength in honeycomb sandwich.
- Space qualified.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areal density, GSM [Two types]</td>
<td>300±20 (EFA 1753) and 200±20 (EFA 1752)</td>
</tr>
<tr>
<td>Lap shear strength at 25°C (Al/Al), MPa</td>
<td>≥ 25</td>
</tr>
<tr>
<td>LSS at 130°C (Al/Al), MPa</td>
<td>≥ 12</td>
</tr>
<tr>
<td>LSS at -196°C (Al/Al), MPa</td>
<td>≥ 25</td>
</tr>
<tr>
<td>Honeycomb Flat wise tensile strength at 25°C, MPa</td>
<td>≥ 4</td>
</tr>
<tr>
<td>TML, %</td>
<td>≤ 1.0</td>
</tr>
<tr>
<td>CVCM, %</td>
<td>≤ 0.1</td>
</tr>
</tbody>
</table>

Technology transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs/industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
ADBOND EPG 2601M is formulated for bonding of honeycomb structures and capable of working under harsh space environments such as thermo-vacuum, thermal cycling, radiation etc. The main feature of this material is that it is thermally conducting and can retain its property at very low temperatures.

ADBOND EPG 2601M is a two part chemically reactive epoxy structural adhesive system consists of polyether modified epoxide resin, filler, rheological additive and colorant in the resin part, curing agent and accelerator in the hardener part. Cure is achieved by mixing the hardener part with resin part packed separately.

Some of the specialties of this material are minimum cure shrinkage combined with excellent adhesion, superior strength & toughness and low out gassing

Typical properties/ characteristics

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Color & consistency</td>
<td>Part A: Black, viscous resin, Part B: Brownish yellow</td>
</tr>
<tr>
<td>2</td>
<td>Viscosity (ps)</td>
<td>1000 to 4000</td>
</tr>
<tr>
<td>3</td>
<td>Sp. Gravity</td>
<td>1.65</td>
</tr>
<tr>
<td>4</td>
<td>Hardness (Shore D)</td>
<td>≥70</td>
</tr>
<tr>
<td>5</td>
<td>Lap shear strength (ksc) on Alumina at RT</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>Thermal conductivity (cal/cm/C/s)</td>
<td>8 x 10⁻⁴</td>
</tr>
<tr>
<td>7</td>
<td>Coef. of thermal expansion (/ oC)</td>
<td>3.5 x 10⁻⁵ – 10 x 10⁻⁵</td>
</tr>
<tr>
<td>8</td>
<td>Volume Resistivity (ohm- cm)</td>
<td>6 x 10¹²</td>
</tr>
<tr>
<td>9</td>
<td>Out gassing</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TML (%)</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>CVCM (%)</td>
<td>0.05</td>
</tr>
<tr>
<td>12</td>
<td>Service temperature</td>
<td>93 K to 373 K</td>
</tr>
</tbody>
</table>

Technology transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Rocasin

Rocket case insulation (ROCASIN) is a rubber compound based on the copolymer of acrylonitrile and polybutadiene known as NBR as per ASTM code. It is specially formulated to serve as a rocket motor case insulation having compatibility to propellant grain system. This has, high strength and strain capability and excellent thermal erosion resistance properties as would be desirable in any rocket motor insulation compound. Due to its low coefficient of gas diffusion, ROCASIN finds application as impermeable liners for FRP vessels holding nitrogen at high pressures. Other than sheet form, it finds use as moulded elastomeric flight components like igniter head end insulation, igniter nozzle liners, convergent liners, insulation boot, thermal boot, head end domes etc.

Applications

Can be used as a thermal insulation barrier layer for various equipments and systems wherever required.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
5-Aminotetrazole Nitrate (ATN) is a nitrogen rich oxidizer having the empirical formula CH4N6O3. An ingredient in gas generating solid propellant/charge composition. Burns faster and yields only non-corrosive gases free from HCl upon combustion. Thus making it ideal ingredient for Green Propellant.

Salient Features

- Nitrogen rich energetic oxidizer.
- Non hygroscopic in nature, hence alternate to Ammonium nitrate. Non HCl producing, good alternate to Ammonium Perchlorate.
- Acts as monopropellant.
- Compositions made out of ATN are fast burning.

Properties

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Properties of ATN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Colour</td>
</tr>
<tr>
<td>2.</td>
<td>State</td>
</tr>
<tr>
<td>3.</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>4.</td>
<td>N-content (%)</td>
</tr>
<tr>
<td>5.</td>
<td>O-content (%)</td>
</tr>
<tr>
<td>6.</td>
<td>Heat output (cal/g)</td>
</tr>
<tr>
<td>7.</td>
<td>Friction sensitivity (kgf)</td>
</tr>
<tr>
<td>8.</td>
<td>Impact sensitivity (kg.cm)</td>
</tr>
<tr>
<td>9.</td>
<td>Decomposition Temperature (°C)</td>
</tr>
</tbody>
</table>

Applications

- Can be used as energetic material in power cartridges.
- Can be used as oxidizer for making cool gas generating propellant.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
BMT- Ceramics

Dielectric ceramics find application as resonators (DR), substrates, antennas etc. in terrestrial as well as space communications systems ranging from UHF to mm-band frequencies. Their advantages are small size, light weight, temperature stability etc. Globally, a few materials have been manufactured for use in specific range of microwavespectrum.

Barium Magnesium Tantalite (BMT) is a typical perovskite ceramic, which is widely used in oscillators, multiplexers, filters etc above 10GHz in satellite and terrestrial microwave communication system. The technology has been developed in collaboration with CMET, Thrissur. This dielectric, coming in the medium permittivity materials, possesses extremely low dielectric loss (tanδ~10-5) in microwave and millimeter wave frequency ranges.

This indigenously developed BMT is equivalent to 8700 series of Trans-Tech and D series of Murata that are used in 10-25 GHz range.

Typical properties

1. Bulk density (Target) < 8 g/cm³
 (Achieved) 7.45 ± 0.1 g/cm³
2. Dielectric constant (εr) (Target) 25 ± 3
 (Achieved) 24 ± 1
3. Unloaded Q-factor (Qu) (Target) 15,000 @ 5.6 GHz
 (Achieved) 28,000 @ 5.6 GHz
 (Achieved) 22,000 @ 7.5 GHz
4. Unloaded Q-factor (Qu) (Target) 8,000 @ 10 GHz
 (Achieved) 20,000 @ 10 GHz
5. Temp. coeff. of freq. (cf) (Target) < 7 ppm/K
 (Achieved) 6 ± 1.0 ppm/K

Interested entrepreneurs are requested to contact the address given below with all relevant particulars regarding their line of current activity, infrastructure available, market assessment of the product, financial arrangements made, turn over and sales of their products for the past years and a copy of their latest annual report.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
DK18- CERAMICS

DK18 is a MgTiO3 based ceramic, which is widely used as Patch Antenna substrates in Satellite and GPS communication systems. This dielectric, coming in the medium permittivity materials, possesses extremely low dielectric loss (tanδ~10-5) in microwave frequency ranges.

Electronic ceramics with high permittivity (εr>20) and low dielectric loss (tanδ<10±3) have a number of applications in microwave devices like filters, oscillators, multiplexers etc in terrestrial as well as Space communications systems ranging from UHF to mm-band frequencies. In such devices, it is desirable that the ceramics have high εr to confine the electromagnetic waves near them. However, when applications like antennas and substrates are considered, 10<εr<20 is desirable for better radiation field outside the ceramic and size reduction. Their advantages are small size, light weight, temperature stability etc. Globally, a few materials have been manufactured for use in specific range of microwave spectrum. This indigenously developed DK18 is equivalent to Kyocera SM200 and P series of Murata that are used as substrates for GPS antennas.

Since the process temperatures are much lower than the tantalates and raw material cost is also low, the production cost of this ceramics is much lower compared to other similar products in the market. This ceramic also has the added advantage of having a low ρ, only about a half that of tantalates.

Typical properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Light cream</td>
</tr>
<tr>
<td>Bulk density (g/cc)</td>
<td>3.7±0.15</td>
</tr>
<tr>
<td>Open Porosity</td>
<td>Nil</td>
</tr>
<tr>
<td>Closed Porosity</td>
<td><2%</td>
</tr>
<tr>
<td>Resistivity (Ω·cm)</td>
<td>10 13</td>
</tr>
<tr>
<td>Coeff. of Thermal Expansion (10−6/K)</td>
<td>9.2</td>
</tr>
<tr>
<td>Dielectric constant (εr)</td>
<td>19±1.5</td>
</tr>
<tr>
<td>Quality factor (Qu @ GHz)</td>
<td>12,000 (6.5)</td>
</tr>
<tr>
<td>Loss factor (tanδ, 10−5)</td>
<td>8.4</td>
</tr>
<tr>
<td>Temp. coeff. of frequency (cf, ppm/K)</td>
<td>0 ± 5</td>
</tr>
<tr>
<td>TE01牠 resonator size at 5 GHz (D=2L, mm)</td>
<td>14</td>
</tr>
</tbody>
</table>

VSSC is willing to offer the technology of DK18 ceramics to eligible interested parties who are in the field of manufacturing similar items

Interested entrepreneurs are requested to contact the address given below with all relevant particulars regarding their line of current activity, infrastructure available, market assessment of the product, financial arrangements made, turn over and sales of their products for the past years and a copy of their latest annual report.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
High-Permittivity Ceramic (DK36) For RF Applications

Dielectric ceramics with high permittivity ($r > 10$) and low dielectric loss ($\tan \delta < 10^{-3}$) have a number of applications in microwave devices. The process technology for realizing DK36 ceramics with dielectric constant r of 36-39 has been established. This is similar to imported ceramics like TE36, MDR36, SB350 and 8300 and useful for microwave filters, oscillators etc. The process technology adopted is advanced solid state ceramic route. The ceramics can be fired to full density below 1350°C. DK36 ceramics can find use in devices like filters, oscillators, diplexers, patch antennas etc. The nominal properties of DK36 ceramic are given below.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk density (g/cc)</td>
<td>4.35 – 4.55</td>
</tr>
<tr>
<td>Coeff. of thermal expansion (10^{-6}/K)</td>
<td>8.8 – 9.2</td>
</tr>
<tr>
<td>Dielectric constant (ε_r)</td>
<td>36 – 38</td>
</tr>
<tr>
<td>Unloaded Quality factor (Qu @ 4 GHz)</td>
<td>6,000 – 8,000</td>
</tr>
<tr>
<td>Loss factor ($\tan \delta$, 10^{-4}) @ 4 GHz</td>
<td>1.25 – 1.5</td>
</tr>
<tr>
<td>Temp. coeff. of frequency (τ_f, ppm/K)</td>
<td>2 – 7</td>
</tr>
</tbody>
</table>

DK36 ceramics can find use as resonators in filters, oscillators etc. and substrates for patch antennas.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Cryo Adhesive EPIFIL-9661
(Used as an Adhesive for the End Fitting Reinforcement of Polyimide Pipelines & as a Matrix Resin for the Kevlar Composite over Wrap on Lox Feed Polyimide Pipelines)

Adhesive EPIFIL-9661 is three part room temperature curing adhesive. Part A is a urethane modified epoxy resin, prepared by the co-reaction of epoxy, polyol and isocyanate. Part-B is a mixture of amine hardeners and Part-C is a Silane Coupling agent. This adhesive system presently finds different applications such as matrix resin for Aramid (Kevlar) composite over-wrap on Liquid Oxygen (LOX) feed polyimide pipelines, for reinforcing the metallic end fittings made of SS-321 and the fibre glass tape to the LOX and LH2 polyimide pipe lines and as a coating material for glass phenolic composite which perform as a thermal isolator between the mix ratio controller and (MRC)/apparent velocity regulator (AVR) valve and the motor in the cryogenic stages of GSLV.

Salient Features
- Three-component, RT curable, toughened, low viscous polymer liquid adhesive
- Increased pot life [up to approx. 3hrs.]
- Good bond ability with PI film as well as SS materials
- Flight qualified

<table>
<thead>
<tr>
<th>Properties</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy value (equivalents/kg) of Part-A</td>
<td>3.5 – 4.5</td>
</tr>
<tr>
<td>Viscosity at 30 °C (cps) of Part-A</td>
<td>450 – 700</td>
</tr>
<tr>
<td>Amine Value (mg KOH/g) of Part-B</td>
<td>340 – 400</td>
</tr>
<tr>
<td>Viscosity at 30 °C (cps) of Part-B</td>
<td>350 – 500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pot life at 25 °C (minutes)</th>
<th>180 (minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness Shore D (after 7 days cure at RT (30±5 °C))</td>
<td>65 (minimum)</td>
</tr>
<tr>
<td>Lap Shear Strength (PI-PI on Aluminium alloy back up) at RT (at 25 °C), (in kg/cm²)</td>
<td>40 (minimum)</td>
</tr>
<tr>
<td>Lap Shear Strength (PI-Fibre glass tape on SS-321 bac up) at RT (air conditioned room, at 25°C), (in kg/cm²)</td>
<td>40 (minimum)</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO
ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Matrix resin for composite application EPY PEEKTOH

Indian Space Research Organization at its Vikram Sarabhai Space Centre (VSSC) has developed EPY PEEKTOH resin which is an elevated temperature curing high performance epoxy resin matrix suitable for composite applications. The specialty of the formulation is good mechanical properties, high glass transition temperature and low outgassing properties. This is an ideal matrix resin for processing thick carbon fabric laminates (≥ 30 mm) without any micro cracks and delamination.

Salient Features
- Elevated temperature curing
- Very good mechanical properties
- High glass transition temperature
- Low outgassing properties
- Suitable viscosity at 60-70°C for processing two-dimensional fabric laminates

Properties
- Volatile matter at 65°C for 5 hours : 0.04
- Maximum viscosity at 65°C (poise) : 60-80
- Shore D hardness at 30°C : > 85
- Specific gravity at 30°C : 1.1 – 1.4
- Flexural strength at 25°C (MPa) : 110 – 120
- TML-WVR (%) : ≤ 1.0
- CVCM (%) : ≤ 0.1
- Glass transition temperature (°C) : 210

Applications
EPY PEEKTOH resin is mainly used for fabrication of composite YOKE panel hinge insert for satellites.

Technology Transfer from ISRO
ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Guanidinium Azotetrazolate (GZT) is a nitrogen rich, carbon poor stable organic compound having the empirical formula (C4H12N16). The decomposition products of GZT are mostly gases consisting of elemental nitrogen as the major product. Since the heat of formation of nitrogen is zero, the decomposition products of GZT are inherently cool and inert. GZT is highly insensitive to mechanical and thermal stimuli and is found as a good fuel additive for gas generator compositions and a good alternate to sodium azide, which is more hazardous to environment.

Salient Features

- Nitrogen rich organic energetic fuel.
- Produces cool nitrogen gases on decomposition.
- Insensitive to mechanical and thermal stimuli.
- Good alternate to sodium azide used in gas generators.
- Versatile energetic compositions can be made by adjusting oxygen balance.

Properties

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Properties of GZT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Colour</td>
</tr>
<tr>
<td>2</td>
<td>State</td>
</tr>
<tr>
<td>3</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>4</td>
<td>N-content (%)</td>
</tr>
<tr>
<td>5</td>
<td>C-content (%)</td>
</tr>
<tr>
<td>6</td>
<td>Heat output (cal/g)</td>
</tr>
<tr>
<td>7</td>
<td>Friction sensitivity (kgf)</td>
</tr>
<tr>
<td>8</td>
<td>Impact sensitivity (kg.cm)</td>
</tr>
<tr>
<td>9</td>
<td>Decomposition Temperature (°C)</td>
</tr>
</tbody>
</table>

Applications

- Fuel for making cool composite gas generators.
- Fuel for making pyrotechnic charges for power cartridges.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Polydimethylsilane (PDMS)
(Raw material for polycarbosilane, a precursor of silicon carbide)

Polydimethylsilane (PDMS) is a pre-ceramic polymer precursor developed by Indian Space Research Organisation at its Vikram Sarabhai Space Centre. PDMS finds use in the synthesis of polycarbosilane (PCS) – a well-known polymeric precursor for silicon carbide (SiC). PCS is prepared from PDMS by heating PDMS in an autoclave, or at normal pressure with a catalyst. PCS is a ceramic precursor useful in realizing C/SiC, C/C-SiC and SiC/SiC based thermo-structural components for re-usable launch vehicles, C/SiC turbine blades, and SiC fibers.

Salient Features

- Fine free flowing powder at room temperature.
- It can be stored in sealed polyethylene bags at room temperature, away from direct sunlight, and has long shelf life.
- PDMS is insoluble in water and other organic solvents such as Acetone, Cyclohexane, Ethyl Acetate, Toluene, Xylene.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>White powder</td>
</tr>
<tr>
<td>Moisture content (by KF)</td>
<td><1%</td>
</tr>
<tr>
<td>Silicon content (wt%)</td>
<td>42 – 48</td>
</tr>
<tr>
<td>Carbon content (wt%)</td>
<td>34 – 41</td>
</tr>
<tr>
<td>Hydrogen content (wt%)</td>
<td>9 – 12</td>
</tr>
<tr>
<td>Oxygen content (wt%)</td>
<td><5</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Phenolic Resin (PF-106)

Phenolic resin (PF-106) is a resol type thermosetting phenol- formaldehyde polymer used for processing high temperature resistant ablative materials such as carbon phenolic and silica phenolic composites. PF 106 is a high temperature curing resin which has excellent ablative properties and char strength.

The production of PF-106 involves the following steps:
1. Melting of Phenol.
2. Charging of formalin and molten phenol into the reactor in the desired mole ratio.
3. Addition of catalyst.
4. Condensation polymerization of phenol and formalin.
5. Neutralization of reaction mixture with acid.
6. Settling of reaction mixture.
7. Removal of water of reaction and salt.
8. Drying of resin to remove traces of water and other volatiles.
9. Addition of required quantity of alcohol
10. Filtration and product packing.
11. Storage

Salient Features

- **Appearance**: Yellowish brown to dark brown liquid
- **Viscosity**: 150 - 250
- **Specific gravity**: 1.12 - 1.16
- **Total solid content**: 60 - 65 for ½ hr. (%)
- **Free phenol (%)**: 6 max.
- **Free formalin (%)**: 3 max.
- **Point of trouble**: 6 – 10 ml of water of resin

Storage conditions

- **Temperature**: 10-20 °C
- **Shelf Life**: 3 months

Applications

The resin finds application as binder for high temperature resistant ablative composites materials such as carbon phenolic, silicaphenolic and epoxy phenolic systems.

Technology Transfer from ISRO

ISRO is willing to offer the know-how of this technology to suitable entrepreneurs/industries in India. Capable manufacturing industries interested in acquiring this know-how may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Phenolic Matrix Resin (PF-108)

Vikram Sarabhai Space Centre has developed different types of resins catering to specific applications in Launch Vehicles and Satellites. These materials may also find various industrial applications such as bonding, sealing, coating, potting, laminating, molding, etc.

PF-108 is a special grade liquid phenolic matrix resin which is used as a precursor for production of silica phenolic throat inserts for the liquid engines of ISRO launch vehicles.

Operational steps for synthesising PF 108

1. Melting of Phenol.
2. Charging of formalin and molten phenol into the reactor in the desired mole ratio.
3. Addition of catalyst.
4. Condensation polymerization of phenol and formalin.
5. Neutralization of reaction mixture with acid to desired pH.
6. Settling of reaction mixture
7. Removal of water of reaction and sodium salt by decantation.
8. Vacuum drying of resin to remove the final traces of water and other volatiles.

Major equipments needed are phenol melting vessel and reaction vessel.

1. Melting vessel for phenol melting.
2. Jacketed SS reactor fitted with cooling coils, stirrer, motor, condenser and receiver for polymerisation and drying. The reactor is suitably linked with the utility system during operation. It is also equipped with load cell, vacuum systems, temp controllers, cooling systems pressure/vacuum gauges, etc.
3. Decanter vessel for removal of water.
4. Water jet ejector for vacuum.

PF 108 Product Specifications

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Yellowish brown to dark brown liquid</td>
</tr>
<tr>
<td>Viscosity at 30 DC</td>
<td>400 – 600 cps</td>
</tr>
<tr>
<td>Specific gravity at 30 DC</td>
<td>1.18 – 1.20</td>
</tr>
<tr>
<td>Refractive Index at 30 DC</td>
<td>1.570 – 1.575</td>
</tr>
<tr>
<td>Total solids</td>
<td>72 – 75%</td>
</tr>
<tr>
<td>Free phenol (%)</td>
<td>18 – 22%</td>
</tr>
<tr>
<td>Free formalin (%)</td>
<td>0.5% (max.)</td>
</tr>
<tr>
<td>Ash Contact</td>
<td>0.5% (max.)</td>
</tr>
<tr>
<td>Point of trouble</td>
<td>13 – 15.5 ml of water/10 ml solution</td>
</tr>
<tr>
<td>pH (5% solution)</td>
<td>7.3 – 7.8</td>
</tr>
<tr>
<td>Sodium Content</td>
<td>0.4% (max.)</td>
</tr>
<tr>
<td>Water Content</td>
<td>14% (max.)</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the know-how of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this know-how may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Indian Space Research Organisation at its Vikram Sarabhai Space Centre (VSSC) has developed a room temperature curable single part adhesive, SILCEM R9 based on polysiloxane for multipurpose bonding applications. This system contains polysiloxane, fillers and curing components mixed under dehumidified conditions and filled inside squeeze tubes for ready – to - use condition. The adhesive can be squeezed out from the tube and very conveniently applied directly on the substrates and bonded. On exposure to humid air, it hardens by itself to a solid rubbery mass.

Salient Features

- Single part siloxane based system containing fillers and special curing components.
- Room temperature curable on exposure to humid air. Safe inside the tube.
- Easy to apply. Simply squeeze and apply.
- Supplied in ready-to-use squeeze tubes of 100-150 g capacity.
- Meets the aerospace quality standards.

Typical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (cured product) g/cc</td>
<td>1.25 - 1.35</td>
</tr>
<tr>
<td>Tensile strength @RTksc</td>
<td>22 - 42</td>
</tr>
<tr>
<td>Tensile strength @120°Cksc</td>
<td>18 - 35</td>
</tr>
<tr>
<td>Elongation @RT%</td>
<td>225 - 350</td>
</tr>
<tr>
<td>Elongation @120°C%</td>
<td>110 - 300</td>
</tr>
<tr>
<td>Lap shear strength (Al-Al) @RTksc</td>
<td>13 - 30</td>
</tr>
<tr>
<td>Lap shear strength (Al-Al) @120°Cksc</td>
<td>13 - 28</td>
</tr>
<tr>
<td>Thermal conductivity at 100°C W/m.K</td>
<td>0.25 - 0.50</td>
</tr>
<tr>
<td>Specific heat at 100°C, J/g/°C</td>
<td>1.0 - 2.0</td>
</tr>
<tr>
<td>Hardness, ShoreA</td>
<td>40 - 55</td>
</tr>
</tbody>
</table>

Applications

This adhesive finds large societal applications for use as sealants to provide leak proof joints. This material can also be used as a gap filler materials where high temperatures are experienced. Being a water repellant adhesive material, the bonded substrates maintains good strength even under wet conditions. It finds applications as a general purpose adhesive for bonding / sealing materials like wood, metals, leathers, foams etc.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Silica Fibres

Indian Space Research Organisation at its Vikram Sarabhai Space Centre (VSSC) has developed a new technology for developing silica fibres by sol-gel process. The fibres can be used for high temperature insulation up to 1500°C.

The low temperature process (400°C) adopted for developing silica fibres is more economical than the conventional technologies and can give high purity fine fibres. In addition, the fibres are hollow as well, thereby improving the insulation property further.

Fibre Specifications:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Silica (99.5%)</td>
</tr>
<tr>
<td>Diameter</td>
<td>1 - 20 µ</td>
</tr>
<tr>
<td>Length</td>
<td>5 - 20 mm</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>500 - 20,000</td>
</tr>
<tr>
<td>Morphology</td>
<td>Amorphous (1400 °C)</td>
</tr>
<tr>
<td>Heat Treatment</td>
<td>Up to 1400 °C</td>
</tr>
</tbody>
</table>

The technology of developing silica fibres is available for transfer to entrepreneurs working in a similar field. Interested entrepreneurs are requested to contact the address given below with relevant particulars regarding their line of current activity, infrastructure available, market assessment of the product, financial arrangements made and turn over and sales of their products for the past years.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Silica Granules

Indian Space Research Organisation at its Vikram Sarabhai Space Centre (VSSC) has developed a new technology for developing silica granules of fine sizes. The granules are produced from aero-gel chips and subsequently firing using microwaves. They can be used for high temperature insulation up to 1250°C. Since they are hollow and weigh very less, they can also be used as filler materials for paints, polymer/metal and ceramic matrices to reduce density and improve thermal properties.

Product specifications:

- **Product Composition**: SiO$_2$ (99.5%)
- **Diameter**: <2 mm
- **Bulk Density**: <0.35 g/cc
- **Morphology**: Hollow, fibrous & Amorphous

The technology of developing silica granules is available for transfer to entrepreneurs working in a similar field. Interested entrepreneurs are requested to contact the address given below with relevant particulars regarding their line of current activity, infrastructure available, market assessment of the product, financial arrangements made and turn over and sales of their products for the past years.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Silica Aerogel By Ambient Pressure Drying Method

Indian Space Research Organization at its Vikram Sarabhai Space Centre (VSSC) has developed hydrophobic silica aerogel in granular/powder form by a simple and cost-effective ambient pressure drying process.

SALIENT FEATURES

Silica aerogels are exotic materials with a unique combination of properties.

As a virtue of high porosity and extremely small pores, aerogels exhibit extremely low thermal conductivity, making them a ‘super-insulator’. In addition to thermal insulation, aerogels are also superior sound insulators and they possess very low refractive index and an excellent dielectric medium which finds numerous applications.

VSSC has developed a conventional drying technology at ambient pressure to get rid of the solvents within the gel. This makes the process amenable to bulk-production in a cost-effective manner. The solvents used in the production can be recycled using this technology, thus making the process environmentally friendly.

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>VALUE ACHIEVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk density, g/cm³</td>
<td>0.06 – 0.20</td>
</tr>
<tr>
<td>BET surface area, m²/g</td>
<td>400 – 1000</td>
</tr>
<tr>
<td>Mean pore size, nm</td>
<td>10 – 40</td>
</tr>
<tr>
<td>Percentage porosity</td>
<td>>90 %</td>
</tr>
<tr>
<td>Contact Angle</td>
<td>>130°</td>
</tr>
<tr>
<td>Thermal conductivity, W/mK (RT, 1 atm)</td>
<td><0.05</td>
</tr>
<tr>
<td>Dielectric constant (@ 1 MHz)</td>
<td>1 – 1.4</td>
</tr>
</tbody>
</table>

APPLICATIONS

- Bulk-fill insulation (thermal and acoustic).
- As fillers in concrete, cement, paints, adhesives, foams, ablative, rubber, coatings etc. for decreasing density, thermal conductivity & flammability, and increasing the heat resistance of the material.
- As precursors to produce aerogel based sheets that can be used as foot insoles, boot / jacket insulation or as winter / Arctic apparel at areas having extremely cold climate.
- In window glazing as insulator between glass/ polyacrylate panels, which allow natural light but not heat (for hot places-where A/C is used), and in trapping heat (in cold places), which allow in significant electricity and money saving.
- As fillers in cosmetic items such as sunscreen creams, foundation, toothpastes etc.
- Carrier for drug delivery.
- Vibration/acoustic damping materials.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Silica Aerogel Based Composite Sheet

Indian Space Research Organization at its Vikram Sarabhai Space Centre (VSSC) has developed hydrophobic silica aerogel by a simple and cost-effective ambient pressure drying process. Using the developed aerogel powders, flexible, hydrophobic aerogel sheets have also been developed.

Salient Features
The composite sheets are made from Silica aerogel which is an exotic material with a unique combination of properties. Low density and thermal conductivity coupled with high porosity and surface area make aerogel a ‘super-insulator’. However, their cost, brittle and friable nature has limited its use to specialized applications.

VSSC/ISRO has developed the technology to develop flexible and hydrophobic sheets from the aerogel powder which expands a gamut of applications, making it suitable to be used as an ideal replacement for conventional insulation. The lab scale technology developed has been demonstrated in thermal protection system since PSLV C39.

Aerogel sheets are ideal to be used as wrap around insulation, which can be cut to desired size and integrated. Aerogel sheets developed in ISRO on the other hand are non-dusting and are easy to handle.

Properties

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>VALUE ACHIEVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areal density, g/m² (gsm)</td>
<td>150 – 500</td>
</tr>
<tr>
<td>Thickness, mm</td>
<td>0.6 – 10</td>
</tr>
<tr>
<td>Thermal Conductivity (@ RT), W/mK</td>
<td>~0.03 (TPS method)</td>
</tr>
<tr>
<td>Dielectric Constant (@ 10 GHz)</td>
<td>1.3 – 1.6</td>
</tr>
</tbody>
</table>

Applications
- Wrap around insulation for use in pipelines/feed-lines etc.
- For use as insulating layer in foot-insoles, boot/jacket insulation or as winter/Arctic apparel at areas having extremely cold climate.
- As low dielectric constant substrates over which circuits can be printed.
- Cryogenic thermal insulation.
- In multi-layer insulation.

Technology Transfer from ISRO
ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs/industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Waterproofing Compound RWPC-03

RWPC-03 is a waterproofing compound developed by VSSC for the waterproofing of silica tiles and silica felt/fabric based flexible insulations. It is an alkoxysilane based system, processed by controlled hydrolysis of siloxanes. This is an environment friendly method and imparts efficient waterproofing of the system. The treatment involves spraying the aqueous solution of an organo-polysiloxane waterproofing compound on the substrate (preferably glass and silica based) and heating them to form a waterproofed article. In the case of silica tiles and silica felt/fabrics, water absorption could be brought down from 350% to <5% and <10% respectively using this compound. It is not a conventional surface coating method and makes both surface as well as bulk of the material water resistant.

Typical properties / characteristics:

- Color and consistency : Transparent liquid
- Viscosity of waterproofing compound : <5cP
- Weight increase due to waterproofing : 3% max by weight
- Water absorption of waterproofed silicatile : <5 % by weight
- Water absorption of waterproofed flexible insulation : <10% by weight

Applications

RWPC-03 can potentially be used as general purpose waterproofing compound for silica based components including composites.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Sealant EPY 2121N

EPY 2121N is a two-part epoxy–amine based sealant containing mica filler which impart high insulation resistance. This castable compound is designed to have pourable consistency and long work life, which result in void free filling of the cavities. Cure is achieved by the application of heat and the sealant exhibits good high and low temperature service capability.

Typical Properties / characteristics:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour and consistency</td>
<td>Grey viscous liquid</td>
</tr>
<tr>
<td>Viscosity at 30°C (ps)</td>
<td>5000 – 10000</td>
</tr>
<tr>
<td>Pot life</td>
<td>>3 hours.</td>
</tr>
<tr>
<td>Epoxy value (eq./kg)</td>
<td>3 – 4.5</td>
</tr>
<tr>
<td>Cure</td>
<td>Ambient (25-35°C) / 18-24hrs followed by 60-65°C/5hrs</td>
</tr>
<tr>
<td>Lap shear strength on A1-A1 at RT</td>
<td>>100 ksc.</td>
</tr>
</tbody>
</table>

Technology Transfer From ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Adbond EPP-3521

ADBOND EPP 3521 is a rubber based adhesive system developed for mounting various electronic systems to the structural elements. It is having very good thermal conductivity with good electrical insulation property and also possess very low out gassing characteristics.

This is an elastomer modified epoxy system consisting of insulative oxide filler in high concentration with silane coupling agent to provide electrical insulation and thermal conductivity.

ADBOND EPP 3521 will find usage in electric/electronic gadgets manufacturing areas where potting/bonding with good thermal dissipation and electrical insulation are warranted.

Typical Properties / Characteristics:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Color & consistency</td>
<td>Black & pasty</td>
</tr>
<tr>
<td>Viscosity of the resin (ps)</td>
<td>700 to 8000</td>
</tr>
<tr>
<td>Sp. Gravity</td>
<td>1.8</td>
</tr>
<tr>
<td>Hardness (Shore D)</td>
<td></td>
</tr>
<tr>
<td>Lap shear strength (ksc) on Alumina at RT</td>
<td>> 80</td>
</tr>
<tr>
<td>Thermal conductivity (cal/cm/C/s)</td>
<td>1.04* 10^-3</td>
</tr>
<tr>
<td>Volume Resistivity (ohm-cm)</td>
<td>1.5* 10^12</td>
</tr>
<tr>
<td>Out gassing</td>
<td></td>
</tr>
<tr>
<td>- TML (%)</td>
<td>< 1</td>
</tr>
<tr>
<td>- CVCM (%)</td>
<td>≤ 0.1</td>
</tr>
<tr>
<td>Cure</td>
<td>Ambient</td>
</tr>
<tr>
<td>Pot Life (min.)</td>
<td>45</td>
</tr>
<tr>
<td>Service temperature</td>
<td>223 K to 338 K</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Umbilical Pads

Umbilical pads are semi-rigid foams which are developed based on polyurethane (PU) polymeric systems having energy absorbing capabilities. These are integral skin foams that can be used for absorbing shock and impact energy hence they are used for controlling vibration and for acoustic insulation. These pads are semi flexible water blown foam system produced by the polymerization reaction between hydroxyl bearing polymeric compounds called polyols and di or polyls or polyisocyanates in the presence of catalysts.

Umbilical pads are designed to absorb impact energy of the separating umbilical lines used in launch vehicles. These foam pads of required size and dimensions are moulded with clamps at the corners for assembling the pads at required locations in the launch pad. These shock absorbing pads can also be utilized for transportation of electronic packages.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in

Technological Highlights of the product if any

1. Semi flexible and shock absorbing foam
2. RT curable
3. Can be moulded to the required shape and size

Typical Properties

<table>
<thead>
<tr>
<th>Nature of foam</th>
<th>Semi-flexible PU foam with blue coloured fire-retardant coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>1200 mm x 1200 mm x 100 mm</td>
</tr>
<tr>
<td>Density (uncoated)</td>
<td>55 - 80 kg/m³</td>
</tr>
<tr>
<td>Flame test with coating</td>
<td>Self-extinguishing within 5-6 sec</td>
</tr>
<tr>
<td>% Ball rebound with coating</td>
<td>20 - 30</td>
</tr>
<tr>
<td>Shelf life</td>
<td>5 years</td>
</tr>
</tbody>
</table>
Low Density Epdm Based Thermal Insulation

The technology offered is for a light weight/low density solid rocket motor thermal insulation material based on EPDM rubber. The rubber compound shall be processed in the form of sheets of required thicknesses by calendering or extrusion. The sheets shall be used of insulation laying process following the same processing temperature and conditions as followed during NBR based systems. The material interface properties: rubber-to-metal and rubber-to-propellant match with conventional NBR based systems.

The advantage over the conventional NBR system is its 15% lower density values, resulting in lesser inert mass. Also the thermal insulation capability is 10-15% better than elsewhere similar insulations.

The material also exhibit better aging resistance and low temperature characteristics. Other than in sheet form use, it finds utility as moulded elastomeric flight components like igniter head end insulation, igniter nozzle liners, convergent liners, insulation boot, thermal boot, head end domes etc.

Applications

- Can be used as a thermal insulation barrier layer for various equipments and systems wherever required.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Coating Compound EPY 1061

Vikram Sarabhai Space Centre has developed different types of adhesive compounds catering to specific applications in Launch Vehicles and Satellites. These materials may also find various industrial applications such as bonding, sealing, coating, potting, laminating, molding etc. The following are some of the new formulations tailored to meet specific requirements as adhesive, sealant, coating and potting compounds. These are derived from resins and different curing agent combinations, modified with various classes of materials such as flexibilizer, toughening agent, fillers, pigments, cure accelerators etc.

EPY1061 is an amidoamine modified epoxy based system specially developed to protect the metal surfaces from corrosion in aqueous strontium perchlorate medium. This coating and sealing system consists of two main components Part A (resin) and Part B (hardener) and a third component Part C which is a solvent. Parts A, B and C are mixed in a specified ratio and sprayed into the metal surface using spray gun to get corrosion resistant coating. The coating adheres well to the metal substrate and reaches fully cured condition at room temperature in 72 hours.

Typical Properties / characteristics:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour and consistency</td>
<td>Red coloured viscous liquid</td>
</tr>
<tr>
<td>Viscosity at 25 °C (cps)</td>
<td>20000-40000</td>
</tr>
<tr>
<td>Pot life/ Gel time</td>
<td>> 25 minutes.</td>
</tr>
<tr>
<td>Cure</td>
<td>Ambient</td>
</tr>
<tr>
<td>Lap shear strength on Al-Al at RT</td>
<td>> 90 ksc.</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Benzoxazine Polymer

Indian Space Research Organisation at its Vikram Sarabhai Space Centre has developed Benzoxazine Polymer, a matrix resin suitable for thermal insulations, adhesive formulations and encapsulant in PCB industry.

Polybenzoxazine is a suitable candidate matrix resin for high density ablative composites and also for light weight foam composites in aerospace applications due to excellent thermal and thermo-oxidative stability, high char yield, good chemical inertness, abrasion resistance and flame retardancy. It also finds application as an encapsulant in electronic industry.

Salient Features

- Excellent flame retardancy
- Easily processable (solventless process, moderate temperature)
- Good thermal stability

Typical Properties / characteristics:

<table>
<thead>
<tr>
<th>Raw materials</th>
<th>Bisphenol A, Aniline and Para-Formaldehyde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Solventless process</td>
</tr>
<tr>
<td>Reaction temperature</td>
<td>120 °C</td>
</tr>
<tr>
<td>Product appearance</td>
<td>Yellowish orange powder</td>
</tr>
<tr>
<td>Solubility</td>
<td>Soluble in acetone, chloroform etc</td>
</tr>
<tr>
<td>Curing temperature</td>
<td>210 °C/3 hrs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polymerization temperature (°C)</th>
<th>200/ 2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal stability</td>
<td>>250 °C.</td>
</tr>
<tr>
<td>Shelf life</td>
<td>1 year</td>
</tr>
<tr>
<td>Storage</td>
<td>Ambient temperature, moisture-free environment</td>
</tr>
<tr>
<td>Approximate Production cost</td>
<td>Rs.1000/kg</td>
</tr>
</tbody>
</table>

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs /industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Compensated Alumina (ComAL) for Electronic Applications

Alumina (Al₂O₃) is a versatile ceramic and a ‘workhorse’ ceramic that finds place in a wide range of applications— mechanical, thermal, electrical, electronic and even optic. Indian industries are well-versed in alumina products for applications like refractory bricks, insulator tubes, crucibles etc. But, alumina components for electronic and similar high-tech applications are still imported. The drawback of pure alumina for electronic applications is the large temperature-coefficient of relative permittivity. Currently imported alumina ceramics suffer from high drift of dielectric constant with temperature and need firing temperature above 1600°C. But, the compensated alumina (ComAl), developed by VSSC, has near-zero temperature coefficient and can be sintered at ≤1475°C.

The ceramic has alumina as major content and a couple of additives and dopants. The powder of ComAl can be suitably processed further for making bulk products as per requirement. Bulk green bodies can be fired at ≤1475°C for less than 2h to get sintered ceramic. Sintered products can be polished, sliced or cut or machined for various applications. Typical properties of bulk ceramics are shown below

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firing temperature (°C)</td>
<td>1450 – 1475</td>
</tr>
<tr>
<td>Bulk density (g/cc)</td>
<td>3.9 ± 0.1</td>
</tr>
<tr>
<td>Resistivity (Ω·cm)</td>
<td>>109</td>
</tr>
<tr>
<td>Coeff. of Thermal Expansion (10⁻⁶/K)</td>
<td>7 – 7.2</td>
</tr>
<tr>
<td>Thermal conductivity (W/m.K)</td>
<td>24 – 30</td>
</tr>
<tr>
<td>Dielectric constant (εr) @ 5GHz</td>
<td>11 – 12</td>
</tr>
<tr>
<td>Loss factor (tand, 10⁻⁵) @ 6 GHz</td>
<td>< 7</td>
</tr>
<tr>
<td>Qυ of resonator @ 12GHz</td>
<td>> 10,000</td>
</tr>
<tr>
<td>Temp. coeff. of frequency (τf, ppm/K)</td>
<td>0 ± 5</td>
</tr>
</tbody>
</table>

APPLICATION AREAS:

ComAl ceramics can replace conventional alumina ceramics in various electrical, electronic and RF applications.

VSSC is willing to offer the technology of ComAl to eligible interested parties who are in the field of manufacturing similar items.

Interested entrepreneurs are requested to contact the address given below with all relevant particulars regarding their line of current activity, infrastructure available, market assessment of the product, financial arrangements made, turn over and sales of their products for the past years and a copy of their latest annual report.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs / industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below:

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
Silicone Polymer Based Low Density Syntactic Foam TPS, SSF P-70

SSF P-70 is a low density thermal protection system based on silicone polymer, with microballoon and other fillers as compounding ingredients. This TPS is room temperature curable and can be applied by brushing and spraying techniques. The remarkable features of this system include lower density of 0.38 g/cc, lower thermal conductivity, high specific heat, good ageing resistance and compatibility with wide variety of substrates. Indian Space Research Organisation (ISRO) at its Vikram Sarabhai Space Centre (VSSC) has developed a technology for processing and application of different types of silicone polymer based thermal protection systems with tailored properties to meet various mission/application requirements.

The processing involves incorporation of selected quality fillers and ingredients in specific type of silicone polymer resin and use of suitable curatives to achieve desired thermo-physical properties.

Salient Features

- Simplified and cost effective technology for processing premium quality thermal protection system.
- Room temperature curable.
- Flexibility with respect to application procedure such as spraying and brushing.
- Compatibility with wide variety of substrates including metals, composites etc.
- Excellent ageing behaviour, making it suitable for long term application with no deterioration of properties for more than 2 years.

Applications

- Useful for light weight, high quality thermal protection system for temperatures up to 3000°C direct exposure with reasonable stability and capability to retain properties. The system also has good aging characteristics. The system can be applied to desired thickness depending upon the thermal environment envisaged. Reasonable mechanical strength and adhesive properties with large number of substrates has been demonstrated by the system. Ability to retain properties at temperatures up to 150 0C and low temperature flexibility are other highlights of the system owing to the low glass transition characteristics associated with silicone polymers.

- The product can be used for thermal protection application for protecting rocket hardware form aerodynamic heating where light weight TPS is required and also as moisture / water impermeable coatings.
- The system can be tailored for use as coating on metal substrates for outdoor use.

Technology Transfer from ISRO

ISRO is willing to offer the knowhow of this technology to suitable entrepreneurs /industries in India. Capable manufacturing industries interested in acquiring this knowhow may write with details of their present activities, requirements and plans for implementation, infrastructure and technical expertise available with them, their own market assessment, if any, and plans for diversification to the address given below.

NewSpace India Limited (NSIL)
Email: contact-nsil@isro.gov.in
<table>
<thead>
<tr>
<th></th>
<th>LIST OF INDUSTRIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KELTRON, Thiruvananthapuram</td>
</tr>
<tr>
<td>2</td>
<td>Fyrkool Pvt. Ltd., Hosur</td>
</tr>
<tr>
<td>3</td>
<td>Varsha Engineering Works, Gujarat</td>
</tr>
<tr>
<td>4</td>
<td>Star Agencies, Baroda</td>
</tr>
<tr>
<td>5</td>
<td>Hindustan Aeronautics Ltd, Lucknow</td>
</tr>
<tr>
<td>6</td>
<td>Gujarat Communication & Electronics Ltd (GCEL), Baroda</td>
</tr>
<tr>
<td>7</td>
<td>Encardiorite Electronics Pvt. Ltd, Lucknow</td>
</tr>
<tr>
<td>8</td>
<td>New Engineering Enterprises, Rourkee</td>
</tr>
<tr>
<td>9</td>
<td>Hydraulic & Engineering Instruments, New Delhi</td>
</tr>
<tr>
<td>10</td>
<td>Fluid Power Engineers, Belgaum</td>
</tr>
<tr>
<td>11</td>
<td>IDL Chemicals Ltd, Hyderabad</td>
</tr>
<tr>
<td>12</td>
<td>Span Industries, Kolhapur</td>
</tr>
<tr>
<td>13</td>
<td>Malabar Polysol & Allied Products Ltd, Kuttippur</td>
</tr>
<tr>
<td>14</td>
<td>Indian Drugs & Pharmaceuticals Ltd., Hyderabad</td>
</tr>
<tr>
<td>15</td>
<td>Electronics Corporation of India Ltd (ECIL), Hyderabad</td>
</tr>
<tr>
<td>16</td>
<td>Shyam Antenna, New Delhi</td>
</tr>
<tr>
<td>17</td>
<td>Meltron, Bombay</td>
</tr>
<tr>
<td>18</td>
<td>UMS Radio Factory, Coimbatore</td>
</tr>
<tr>
<td>19</td>
<td>MCE Products, New Delhi</td>
</tr>
<tr>
<td>20</td>
<td>Television Factory, Shimla</td>
</tr>
<tr>
<td>21</td>
<td>Sundaram Industries, Madurai</td>
</tr>
<tr>
<td>22</td>
<td>Madras Industrial Linings, Madras</td>
</tr>
<tr>
<td>23</td>
<td>Hyderabad Batteries Ltd, Hyderabad</td>
</tr>
<tr>
<td>24</td>
<td>Andhra Pradesh Small Scale Industrial Development Corporation Ltd., Hyderabad</td>
</tr>
<tr>
<td>25</td>
<td>NIL, Calcutta</td>
</tr>
<tr>
<td>26</td>
<td>Hind High Vacuum Co. Ltd, Bangalore</td>
</tr>
<tr>
<td>27</td>
<td>Bharat Heavy Electricals Ltd., Bangalore</td>
</tr>
<tr>
<td>28</td>
<td>IVP Ltd, Bombay</td>
</tr>
<tr>
<td>29</td>
<td>United Electrical Industries Ltd, Quillon</td>
</tr>
<tr>
<td>30</td>
<td>Watts Electronics Pvt. Ltd, Cochin</td>
</tr>
<tr>
<td>31</td>
<td>Insulex Chemicals Pvt. Ltd, Pune</td>
</tr>
<tr>
<td>32</td>
<td>Bharat Electronics Limited (BEL), Bangalore</td>
</tr>
<tr>
<td>33</td>
<td>Optomech Engineers, Hyderabad</td>
</tr>
<tr>
<td>34</td>
<td>Dynascan Inspection Systems, Bangalore</td>
</tr>
<tr>
<td>35</td>
<td>Doschen India Ltd, Bombay</td>
</tr>
<tr>
<td>36</td>
<td>Speck Systems, Hyderabad</td>
</tr>
<tr>
<td>37</td>
<td>Micro Documentation, Secunderabad</td>
</tr>
<tr>
<td>38</td>
<td>Tech Invest (India) Pvt. Ltd, Hardwar</td>
</tr>
<tr>
<td>39</td>
<td>Pravin Reinforced Plastics Pvt. Ltd, New Delhi</td>
</tr>
<tr>
<td>40</td>
<td>Kalpana Glass Fibres, Pune</td>
</tr>
<tr>
<td>41</td>
<td>Pyromasters, Trivandrum</td>
</tr>
<tr>
<td>42</td>
<td>Unnati Corporation, Ahmedabad</td>
</tr>
<tr>
<td>43</td>
<td>NITEL, Bhopal</td>
</tr>
<tr>
<td>44</td>
<td>Defence Research & Devp. Lab (DRDL), Hyderabad</td>
</tr>
<tr>
<td>45</td>
<td>RDSO, Lucknow</td>
</tr>
<tr>
<td>46</td>
<td>CMC Ltd, Secunderabad</td>
</tr>
<tr>
<td>47</td>
<td>Trumps Software, Chennai</td>
</tr>
<tr>
<td>48</td>
<td>Andhra Sugars Ltd, Tanuku</td>
</tr>
<tr>
<td>49</td>
<td>National Organic Chemical Industries Ltd, Bombay</td>
</tr>
<tr>
<td>50</td>
<td>Indian Telephone Industries (ITI), Bangalore</td>
</tr>
<tr>
<td>51</td>
<td>Remote Sensing Instruments, Hyderabad</td>
</tr>
<tr>
<td>52</td>
<td>Sita Electronics, Hyderabad</td>
</tr>
<tr>
<td>53</td>
<td>Reliance Silicones, Bombay</td>
</tr>
<tr>
<td>54</td>
<td>Industrial Control & Appliances Pvt. Ltd, Bombay</td>
</tr>
<tr>
<td>55</td>
<td>Ordnance Factory Board, Calcutta</td>
</tr>
<tr>
<td>56</td>
<td>Thermax Pvt. Ltd, Pune</td>
</tr>
<tr>
<td>57</td>
<td>Apollo Microsystems, Hyderabad</td>
</tr>
<tr>
<td>58</td>
<td>Elico Pvt. Lt, Hyderabad</td>
</tr>
<tr>
<td>59</td>
<td>Optical Coatings Laboratories, Bangalore</td>
</tr>
<tr>
<td>60</td>
<td>Titanium Tantalum, Madras</td>
</tr>
<tr>
<td>61</td>
<td>Nagaraja Industries, Hassan</td>
</tr>
<tr>
<td>62</td>
<td>Tamil Nadu Industrial Explosives, Vellore</td>
</tr>
<tr>
<td>63</td>
<td>Coromondal Prodrorite, Madras</td>
</tr>
<tr>
<td>64</td>
<td>Hindustan Computers Ltd (HCL), New Delhi</td>
</tr>
<tr>
<td>65</td>
<td>Tata Electric Co., Bombay</td>
</tr>
<tr>
<td>66</td>
<td>High-Tech Optics, Hyderabad</td>
</tr>
<tr>
<td>67</td>
<td>Harvin Optical & Glass Industries, Hyderabad</td>
</tr>
<tr>
<td>No.</td>
<td>Company Name</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>68</td>
<td>Deccan Safety Glass Ltd</td>
</tr>
<tr>
<td>69</td>
<td>Tata Tea Ltd</td>
</tr>
<tr>
<td>70</td>
<td>Fafeco Engineers</td>
</tr>
<tr>
<td>71</td>
<td>Ovis Equipment</td>
</tr>
<tr>
<td>72</td>
<td>Electric Control Gear (India) Ltd, Ahmedabad</td>
</tr>
<tr>
<td>73</td>
<td>Saichem</td>
</tr>
<tr>
<td>74</td>
<td>Valeth High Tech. Composites Pvt. Ltd., Madras</td>
</tr>
<tr>
<td>75</td>
<td>ITW Signode India Ltd</td>
</tr>
<tr>
<td>76</td>
<td>Sotech India</td>
</tr>
<tr>
<td>77</td>
<td>Shri. M. Vijayakumar</td>
</tr>
<tr>
<td>78</td>
<td>Nebula Chemicals</td>
</tr>
<tr>
<td>79</td>
<td>Madras Metallurgical Services Pvt. Ltd, Madras</td>
</tr>
<tr>
<td>80</td>
<td>Hifin Products</td>
</tr>
<tr>
<td>81</td>
<td>Microscan Instruments Pvt. Ltd, Hyderabad</td>
</tr>
<tr>
<td>82</td>
<td>Precipitated Silicos</td>
</tr>
<tr>
<td>83</td>
<td>Govind Chemicals</td>
</tr>
<tr>
<td>84</td>
<td>Vijayadurga Enterprises</td>
</tr>
<tr>
<td>85</td>
<td>Trikuta Chemicals</td>
</tr>
<tr>
<td>86</td>
<td>Lakshman Chemicals</td>
</tr>
<tr>
<td>87</td>
<td>Yash Papers</td>
</tr>
<tr>
<td>88</td>
<td>Karthik Chemicals</td>
</tr>
<tr>
<td>89</td>
<td>Banmshihari Rice Mills</td>
</tr>
<tr>
<td>90</td>
<td>Gupta Rubber Products</td>
</tr>
<tr>
<td>91</td>
<td>Avee Industries</td>
</tr>
<tr>
<td>92</td>
<td>Punjab Agro Industries</td>
</tr>
<tr>
<td>93</td>
<td>Gujarat Alkalies and Chemicals Ltd, Vadodara</td>
</tr>
<tr>
<td>94</td>
<td>Glasstics India</td>
</tr>
<tr>
<td>95</td>
<td>Machine Products</td>
</tr>
<tr>
<td>96</td>
<td>MCBs Pvt Ltd</td>
</tr>
<tr>
<td>97</td>
<td>Astrooptics</td>
</tr>
<tr>
<td>98</td>
<td>Larson & Toubro (L&T)</td>
</tr>
<tr>
<td>99</td>
<td>Kaushik Enterprises</td>
</tr>
<tr>
<td>100</td>
<td>Sur Fire Equipment</td>
</tr>
<tr>
<td>101</td>
<td>Gitanjali Enterprises</td>
</tr>
<tr>
<td>102</td>
<td>K V Fire Chemicals (I) Ltd</td>
</tr>
<tr>
<td>103</td>
<td>Fire Safety Devices Pvt Ltd</td>
</tr>
<tr>
<td>104</td>
<td>Kemex international Pvt Ltd</td>
</tr>
<tr>
<td>105</td>
<td>Sameer</td>
</tr>
<tr>
<td>106</td>
<td>ABR Organics</td>
</tr>
<tr>
<td>107</td>
<td>Sujal Plastics Work</td>
</tr>
<tr>
<td>108</td>
<td>General Optics</td>
</tr>
<tr>
<td>109</td>
<td>Hytronics</td>
</tr>
<tr>
<td>110</td>
<td>Polygon Instrumentation & Aids Pvt. Ltd, Bangalore</td>
</tr>
<tr>
<td>111</td>
<td>Dynaspede Integrated Systems Pvt. Ltd, Hosur</td>
</tr>
<tr>
<td>112</td>
<td>Era Electronics</td>
</tr>
<tr>
<td>113</td>
<td>Pegasus Software Consultants Pvt. Ltd., Bangalore</td>
</tr>
<tr>
<td>114</td>
<td>Maharshi Electronics Systems</td>
</tr>
<tr>
<td>115</td>
<td>Systech Pvt. Ltd</td>
</tr>
<tr>
<td>116</td>
<td>Zoom Technics</td>
</tr>
<tr>
<td>117</td>
<td>Instrumentation Ltd</td>
</tr>
<tr>
<td>118</td>
<td>Dynalog Marketing Services</td>
</tr>
<tr>
<td>119</td>
<td>C-DAC</td>
</tr>
<tr>
<td>120</td>
<td>RCL Ltd</td>
</tr>
<tr>
<td>121</td>
<td>Andhra Electronics</td>
</tr>
<tr>
<td>122</td>
<td>Karnataka Tele Electronics Pvt Ltd, Bangalore</td>
</tr>
<tr>
<td>123</td>
<td>Tata Telecom Ltd</td>
</tr>
<tr>
<td>124</td>
<td>Himachal Futuristic Commn Ltd, Solan</td>
</tr>
<tr>
<td>125</td>
<td>Electromag Devices</td>
</tr>
<tr>
<td>126</td>
<td>Comsat Systems Pvt. Ltd</td>
</tr>
<tr>
<td>127</td>
<td>Optical Systems & Components</td>
</tr>
<tr>
<td>128</td>
<td>Aries Engineering Ltd</td>
</tr>
<tr>
<td>129</td>
<td>Syscon Instruments Pvt. Ltd</td>
</tr>
<tr>
<td>130</td>
<td>Macurex Sensors Pvt. Ltd</td>
</tr>
<tr>
<td>131</td>
<td>Kerala Hightech Industries Ltd, Thiruvananthapuram</td>
</tr>
<tr>
<td>132</td>
<td>Brother Surgicals Ltd</td>
</tr>
<tr>
<td>133</td>
<td>Ananth Microtronics</td>
</tr>
<tr>
<td>134</td>
<td>ESL, Gandhinagar</td>
</tr>
<tr>
<td>135</td>
<td>Zoom Technics</td>
</tr>
<tr>
<td>136</td>
<td>RSK Enterprises</td>
</tr>
<tr>
<td>137</td>
<td>Susee Spacetek</td>
</tr>
<tr>
<td>138</td>
<td>Avantel Communication Ltd</td>
</tr>
<tr>
<td>139</td>
<td>PK Industries</td>
</tr>
<tr>
<td>140</td>
<td>Multi Arc India</td>
</tr>
<tr>
<td>No.</td>
<td>Company Name</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>141</td>
<td>Opto Electronics Factory, Dehradun</td>
</tr>
<tr>
<td>142</td>
<td>Shreyas Engineers, Bangalore</td>
</tr>
<tr>
<td>143</td>
<td>Stylus Wares, Trivandrum</td>
</tr>
<tr>
<td>144</td>
<td>Reliable Wares, Thrissur</td>
</tr>
<tr>
<td>145</td>
<td>Prayag Polymers Ltd, New Delhi</td>
</tr>
<tr>
<td>146</td>
<td>MTAR, Hyderabad</td>
</tr>
<tr>
<td>147</td>
<td>Bharat Electronics Systems, Gandhinagar</td>
</tr>
<tr>
<td>148</td>
<td>Rishab Resins & Chemicals, Hyderabad</td>
</tr>
<tr>
<td>149</td>
<td>Sumeru Microwave Communications, Ahmedabad</td>
</tr>
<tr>
<td>150</td>
<td>Thankerson, Pune</td>
</tr>
<tr>
<td>151</td>
<td>ER Automotives, Rothak</td>
</tr>
<tr>
<td>152</td>
<td>MM Engineers Pvt. Ltd, Coimbatore</td>
</tr>
<tr>
<td>153</td>
<td>Chennai Automation, Chennai</td>
</tr>
<tr>
<td>154</td>
<td>Space Products India (P) Ltd, Trivandrum</td>
</tr>
<tr>
<td>155</td>
<td>Legend Technologies, Bangalore</td>
</tr>
<tr>
<td>156</td>
<td>ADA, Bangalore</td>
</tr>
<tr>
<td>157</td>
<td>IPA Pvt Ltd, Bangalore</td>
</tr>
<tr>
<td>158</td>
<td>Avasarala Automation Ltd, Bangalore</td>
</tr>
<tr>
<td>159</td>
<td>Hydro Control Pvt. Ltd, Bangalore</td>
</tr>
<tr>
<td>160</td>
<td>Astra Microwave Products Ltd, Secunderabad</td>
</tr>
<tr>
<td>161</td>
<td>Accord Microwave Products Ltd, Secunderabad</td>
</tr>
<tr>
<td>162</td>
<td>Holmarc Slides and Controls Pvt. Ltd, Kochi</td>
</tr>
<tr>
<td>163</td>
<td>Bhagavan Mahavir Vikalanga Sahayatha Samithi, Jaipur</td>
</tr>
<tr>
<td>164</td>
<td>Dymnamic Techno Medicals Pvt. Ltd, Aluva</td>
</tr>
<tr>
<td>165</td>
<td>Accord Network (I) Pvt. Ltd, Thane</td>
</tr>
<tr>
<td>166</td>
<td>Anabond Ltd, Chennai</td>
</tr>
<tr>
<td>167</td>
<td>Satcom Technologies, Hyderabad</td>
</tr>
<tr>
<td>168</td>
<td>Navanidhi Electronics, Hyderabad</td>
</tr>
<tr>
<td>169</td>
<td>Pashupathi Acrylon Ltd, Moradabad</td>
</tr>
<tr>
<td>170</td>
<td>M/s Resistoflex, Noida</td>
</tr>
<tr>
<td>171</td>
<td>Elastomeric Engineers, Salem</td>
</tr>
<tr>
<td>172</td>
<td>M/s Cosmotone Conductors Ltd., Moovattupuzha</td>
</tr>
<tr>
<td>173</td>
<td>Solvosol Paints Pvt Ltd, Hyderabad</td>
</tr>
<tr>
<td>174</td>
<td>komopier Explosives, Secunderabad</td>
</tr>
<tr>
<td>175</td>
<td>Infinium (India) Limited, Ahmedabad</td>
</tr>
<tr>
<td>176</td>
<td>MIDAS Communication, Chennai</td>
</tr>
<tr>
<td>177</td>
<td>West Coast Polymers, Kannai</td>
</tr>
<tr>
<td>178</td>
<td>Beekay Foams, Ernakulum</td>
</tr>
<tr>
<td>179</td>
<td>Premier Explosives, Secundrabad</td>
</tr>
<tr>
<td>180</td>
<td>Komoline Electronics Pvt Ltd, Ahmedabad</td>
</tr>
<tr>
<td>181</td>
<td>High Energy Batteries, Hyderabad</td>
</tr>
<tr>
<td>182</td>
<td>Scanpoint Geomatics Ltd, Ahmedabad</td>
</tr>
<tr>
<td>183</td>
<td>VXL Technologies Ltd, Faridabad</td>
</tr>
<tr>
<td>184</td>
<td>Light Logics Holography and Optics Pvt Ltd, Thiruvananathapuram</td>
</tr>
<tr>
<td>185</td>
<td>AE Telelinks System Ltd, New Delhi</td>
</tr>
<tr>
<td>186</td>
<td>Opel India, Pune</td>
</tr>
<tr>
<td>187</td>
<td>Holmarc Opto Mechatronics Private Limited, Cochin</td>
</tr>
<tr>
<td>188</td>
<td>Surelia Wire Cut Private Limited, Rajkot</td>
</tr>
<tr>
<td>189</td>
<td>Technocom Dies & Precision Products, Rajkot</td>
</tr>
<tr>
<td>190</td>
<td>Ants Ceramics Private Limited, Nashik</td>
</tr>
<tr>
<td>191</td>
<td>Tulsi Industries, Ahmedabad</td>
</tr>
<tr>
<td>192</td>
<td>Metreat Engineers, Ahmedabad</td>
</tr>
<tr>
<td>193</td>
<td>Performance Polymers, Bangalore</td>
</tr>
<tr>
<td>194</td>
<td>Rubfila international Pvt Ltd, Palakkad</td>
</tr>
<tr>
<td>195</td>
<td>Sahajanand Laser Technology Ltd., Gandhinagar</td>
</tr>
<tr>
<td>196</td>
<td>Centum Electronics, Bangalore</td>
</tr>
<tr>
<td>197</td>
<td>Fine Finish Organics, Mumbai</td>
</tr>
<tr>
<td>198</td>
<td>Z Strand Limited, Bangalore</td>
</tr>
<tr>
<td>199</td>
<td>SSP 2000 INC, Hyderabad</td>
</tr>
<tr>
<td>200</td>
<td>PRS Permacel, Mumbai</td>
</tr>
<tr>
<td>201</td>
<td>Regenesis Industries Pvt. Ltd, Hyderabad</td>
</tr>
<tr>
<td>202</td>
<td>Carborundum Universal Ltd</td>
</tr>
<tr>
<td>203</td>
<td>Riotech Industries, Pala</td>
</tr>
<tr>
<td>204</td>
<td>Interced Systems, Cochin</td>
</tr>
<tr>
<td>205</td>
<td>SVR Infotech, Pune</td>
</tr>
<tr>
<td>206</td>
<td>Lakshmi Technology & Engineering Industries Limited, Coimbatore</td>
</tr>
<tr>
<td>207</td>
<td>Central Tool Room and Training Centre, Bhubaneswar</td>
</tr>
<tr>
<td>208</td>
<td>M/s Atul Industries, Atul, Gujarat</td>
</tr>
<tr>
<td>209</td>
<td>M/s Aerospace Materials Pvt Ltd, Coimbatore</td>
</tr>
<tr>
<td>210</td>
<td>M/s Prism Circuitronics Pvt. Ltd, Mumbai</td>
</tr>
<tr>
<td>211</td>
<td>Optimized Solutions Pvt. Ltd., Ahmedabad</td>
</tr>
<tr>
<td></td>
<td>Company Name</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>212</td>
<td>M/s Pidilite Industries., Mumbai</td>
</tr>
<tr>
<td>213</td>
<td>M/s Aerospace Engineers Pvt Ltd., Salem</td>
</tr>
<tr>
<td>214</td>
<td>M/s Ants Innovations, Vasai, MH</td>
</tr>
<tr>
<td>215</td>
<td>Sri Ram Foams Pvt Ltd., Chennai</td>
</tr>
<tr>
<td>216</td>
<td>M/s Polyformalin Pvt Ltd, Kochi</td>
</tr>
<tr>
<td>217</td>
<td>Kerala State Electronics Development Corporation Limited, Trivandrum</td>
</tr>
<tr>
<td>218</td>
<td>Rangsons Defence Solutions Pvt. Ltd., Bengaluru</td>
</tr>
<tr>
<td>219</td>
<td>Stesalit Systems Limited, Kolkata</td>
</tr>
<tr>
<td>220</td>
<td>VTL Electronics Limited, Kolkata</td>
</tr>
<tr>
<td>221</td>
<td>M/s Tempsens Instruments (India) Pvt Ltd</td>
</tr>
<tr>
<td>222</td>
<td>M/s Heatcon Sensors</td>
</tr>
<tr>
<td>223</td>
<td>M/s NALCO</td>
</tr>
<tr>
<td>224</td>
<td>M/s Exicom Systems Pct Ltd</td>
</tr>
<tr>
<td>225</td>
<td>M/s Amararaja Batteries, Tirupati</td>
</tr>
<tr>
<td>226</td>
<td>M/s Tata Chemicals Ltd., Mumbai</td>
</tr>
<tr>
<td>227</td>
<td>M/s GOCL, Hyderabad</td>
</tr>
<tr>
<td>228</td>
<td>M/s Bhukhanwala Industries, Gujarat</td>
</tr>
<tr>
<td>229</td>
<td>M/s Siddhi Engineers, Ahmedabad</td>
</tr>
<tr>
<td>230</td>
<td>M/s Azista Industries</td>
</tr>
<tr>
<td>231</td>
<td>M/s Surmit Enterprises, Ahmedabad</td>
</tr>
<tr>
<td>232</td>
<td>M/s Prcyon Techno Industry, Mehsana</td>
</tr>
<tr>
<td>233</td>
<td>M/s Pradhan Engineering Company, Ahmedabad</td>
</tr>
<tr>
<td>234</td>
<td>M/s Berger Paints, Kolkata</td>
</tr>
<tr>
<td>235</td>
<td>M/s C-DAC, Trivandrum</td>
</tr>
</tbody>
</table>
INDUSTRIES ENGAGED STATE-WISE DISTRIBUTION

Jammu & Kashmir-1
Punjab & Haryana-2
Rajasthan-4
Madhya Pradesh-1
Gujarat-31
Maharashtra-37
Karnataka-29
Kerala-28
Himachal Pradesh-2
Utter Pradesh & Delhi NCR-20
West Bengal-7
Orissa-2
Andhra Pradesh & Telangana-46
Tamilnadu-25