

MISSION

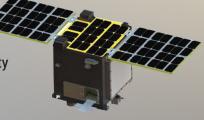
PSLV-C56 / DS-SAR, is the Dedicated Commercial Mission of NewSpace India Limited (NSIL) for ST Engineering, Singapore. DS-SAR, a Radar Imaging Earth Observation satellite is the primary satellite for the mission. In addition to this, there are six co-passenger customer satellites also belonging to Singapore. All satellites would be injected into 535 km circular with 5° orbital inclination.

This is the 58th flight of PSLV and 17th flight of PSLV in Core Alone configuration. After injecting all the satellites, the upper stage of the rocket would be placed in lower orbit to ensure its reduced orbital life. PSLV-C56 launch will be accomplished from First Launch Pad (FLP) located at Satish Dhawan Space Centre (SDSC), Sriharikota.

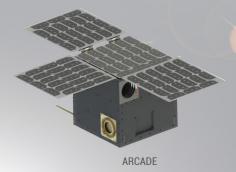
Payloads onboard PSLV-C56

Satellite	Agency / Country	Separating Mass (kg)	
DS-SAR	DSTA-ST Engineering, Singapore	352	
ARCADE		24	
VELOX-AM	NTU, Singapore	23	
SCOOB-II		4	
ORB-12 STRIDER	ALIENA Private Limited, Singapore	13	
Galassia-2	NUS, Singapore	3.5	
NuLIoN	NuSpace Private Limited, Singapore	3	

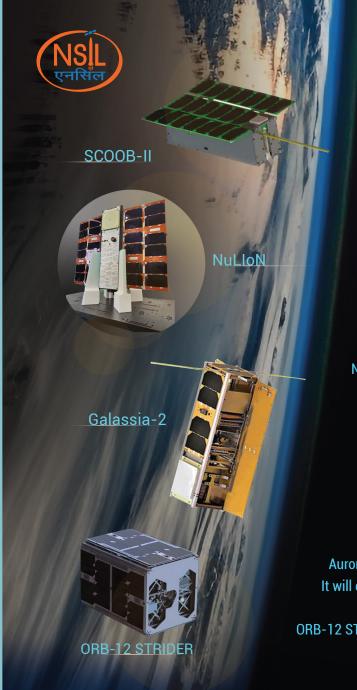
PAYLOAD


DS-SAR VELOX-AM ARCADE SCOOB-|| NuLloN Galassia-2 ORB-12 STRIDER

DS-SAR satellite is developed under a partnership between DSTA (representing the Government of Singapore) and ST Engineering. Once deployed and operational, it will be used to support the satellite imagery requirements of various agencies within the Government of Singapore. ST Engineering will use it for multi-modal and higher responsiveness imagery and geospatial services for their commercial customers.



DS-SAR carries a Synthetic Aperture Radar (SAR) payload developed by Israel Aerospace Industries (IAI). This allows the DS-SAR to provide for all-weather day and night coverage, and capable of imaging at 1m-resolution at full polarimetry.


VELOX-AM is a microsatellite developed by Nanyang Technological University (NTU), Singapore, for technology demonstration of Additive Manufacturing (AM) payloads.

VELOX-AM

ARCADE is a 27U microsatellite designed and built by
Nanyang Technological University (NTU), Singapore, in collaboration
with the INSPIRE (International Satellite Program in Research and
Technology) consortium. ARCADE carries iodine based solid propellant
propulsion module, based on Hall effect thruster for orbit maintenance
during the low altitude mission.

PAYLOAD

scoob-II is a 3U CubeSat designed and developed by a student team at Satellite Research Centre (SaRC), Nanyang Technological University (NTU) in Singapore. The satellite is designed for a 6-month mission lifetime. SCOOB-II utilizes a three-axis controlled reaction wheel assembly for attitude control.

NuLloN is a 3U nanosatellite developed by NuSpace as the seed satellite for a LEO equatorial constellation providing continuous LoRaWAN IoT services.

Galassia-2 is an educational 3U nanosatellite by National University of Singapore (NUS). The main mission of GALASSIA-2 is to perform an inter-satellite link (ISL) with TeLEOS-1. Galassia-2 will demonstrate the capability of using Commercial Off The Shelf (COTS) multispectral imagery for space applications.

ORB-12 STRIDER is developed under an international collaboration, coordinated by Singapore-based ALIENA, including Orbital Astronautics as bus providers, and Aurora Propulsion Technologies as subsystem co-developers. It will demonstrate next generation propulsion systems catered specifically for small satellite constellations.

ORB-12 STRIDER will carry the world's first Multi-modal all-Electric Propulsion Engine (MEPE), featuring ALIENA's flagship Multi-Stage Ignition Compact (MUSIC) Hall thruster and Aurora's ARM resistojets.

PS4 De-Orbiting Experiment

PSLV-C56 Vehicle Configuration (S139+PL40+HPS3 (7.6t)+L1.6(Ti))

PS4 will be de-orbited to Low Earth circular orbit ~300 x 300 km, using left out propellants to reduce orbital life of spent PS4 stage.

PSLV-C56 Vehicle Characteristics			
Vehicle Height	44.4 m		
Lift-off Mass	228.642 t		
Propulsion Stages First Stage Second Stage Third Stage Fourth Stage	S139 PL40 HPS3(7.6 t) L1.6 (Ti)		

	(, , , , , , , , , , , , , , , , , , ,
Parameter	Orbit-1 (Satellites)	Orbit-2 (Spent PS4 Stage)
Semi-major Axis (km) (wrt. Equatorial Earth Radius	6914.137	6678.137
Altitude (km)	536	300
Inclination	5°+	· 0.2°
Launch Pad	FLP	
Launch Azimuth	102°	

PSLV-C56 Mission Specifications (Osculating Elements)

	PSLV-C30 Stayes at a dialice			
	Stage 1(PS1)	Stage 2 (PS2)	Stage 3 (HPS3)	Stage 4 (PS4)
Length (m)	20	12.8	3.6	3.0
Diameter (m)	2.8	2.8	2	1.34
Propellant	Solid (HTPB based)	Liquid (UH25 + N ₂ O ₄)	Solid (HTPB based)	Liquid (MMH+ MON ₃)
Propellant Mass (t)	139	41	7.65	1.6

PSI V-C56 Stanes at a Glance

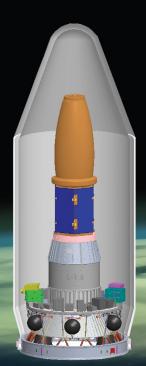
PSLV-C56 Flight Sequence

Satellite Separation

PS4 Cut-off

PS4 Ignition

HPS3 Separation


HPS3 Ignition

PS2 Separation

Heat shield Separation

PS2 Ignition

PS1 Separation

PS1 Ignition

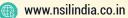
Payload Accommodation in PSLV-C56

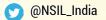
PSLV-C56

इसरो ंडान

Typical Flight Profile

Event	Time (s)	Local Altitude (km)	Inertial Velocity (m/s)
PS1 RCT Ignition	-3	0.026	451.9
PS1 Ignition	0	0.026	451.9
PS1 Separation	110.46	50.019	1724.1
PS2 Ignition	110.66	50.208	1723.2
CLG Initiation	115.66	54.858	1743.0
PLF Separation	185.56	113.100	2606.8
PS2 Separation	262.98	164.089	4695.0
PS3 Ignition	264.18	164.752	4693.7
PS3 Burn Out	390.88	216.756	7693.0
PS3 Separation	590.88	325.175	7568.4
PS4 Ignition	951.42	480.280	7388.2
PS4 Cut-off (RTD-T6)	1224.42	536.079	7590.8
DS-SAR Separation	1271.42	536.059	7592.7
NuLIoN Separation	1281.42	536.051	7592.7
ORB-12 STRIDER Separation	1326.42	536.004	7592.8
Galassia-2 Separation	1340.42	535.984	7592.8
SCOOB- Separation	1381.42	535.914	7592.9
ARCADE Separation	1431.42	535.804	7593.0
VELOX-AM Separation	1486.42	535.652	7593.2




isro.dos

Department of Space, Government of India Antariksh Bhavan, New BEL Road Bangalore-560094, India Telephone: +91 80 2217 2119

