Payloads recommended for Venus Orbiter Mission(VOM) | S.No | Name of the VOM Payload | Science Objectives | |------|---|--| | 1. | Venus S-Band SAR (VSAR) | Investigation of active volcanism/tectonism on Venus surface through observation with polarimetric SAR at high spatial resolution. Characterization and retrieval of surface physical properties and weathering/Aeolian features through polarimetric SAR data. | | 2. | Venus Advanced Radar for
Topside Ionosphere and
subsurface sounding
(VARTISS)-Subsurface | Study and Characterization of vertical subsurface structure and stratigraphy of various geological units Estimation of lava flow thickness and volume that extruded onto the surface at different time/stratigraphic levels | | | Venus Advanced Radar for
Topside Ionosphere and
subsurface sounding
(VARTISS)-Ionosphere | Characterization of the Venus topside ionosphere and studying its temporal and spatial variability Studying the plasma and magnetic boundaries | | 3. | Venus Thermal Camera (VTC) | Measurement of Brightness Temperature and its variability of Venus using broadband spectrum Understanding the climate evolution of Venusian atmosphere through radiation budget study | | 4. | Venus Cloud Monitoring
Camera (VCMC) | Monitoring of super rotation of
atmosphere through measurement of
cloud velocities Investigation into the speculated
correlation between SO2 and unknown
UV absorbers. | | 5. | Venus Atmospheric
SpectroPolarimeter (VASP) | Study of Clouds and gases using the spectroscopic and polarimetric measurements in NIR band | | 6. | Solar occultation photometry for vertical profiling of Aerosols and thin clouds in Venusian atmosphere (SPAV) | Altitude variation of aerosol abundance
in the mesosphere, including spatial
variations. | | 7. | Retarding Potential Analyser (RPA) for the observation of Venusian ionosphere | Study the Venusian ionosphere and
Exosphere: its composition and
dynamics | | 8. | Radio Anatomy of Venus
Ionosphere (RAVI) | Systematic measurements of ionospheric structure during daytime and night time to understand the prevailing dynamics and causative mechanisms Understand the solar wind interaction with Venusian ionosphere To study the Venusian Ionosphere and atmosphere | |----|---|--| | 9. | Venus Ionospheric and Solar
Wind particle AnalySer
(VISWAS) | To study the loss of Venus upper atmosphere/ionosphere (ions as well as non-thermal neutrals) and the role of different escape mechanisms. To study the characteristics of plasma in different plasma boundaries. Role of electrons (from the magnetosphere or shocked solar wind) for generating the ionosphere and its energetics | | 10 | Venus Ionospheric Plasma
wave detector (VIPER) – Flux
Gate Magnetometer (FGM) | To sample the magnetic environment around Venus. | | 11 | Venus Radiation environment monitor (VeRad) | To measure the influence of high
energy particles on the Venus
atmosphere and the radiation levels. | | 12 | Venus InfraRed Atmospheric
gases Linker (VIRAL) | To retrieve the vertical profiles of atmospheric density, temperature Carbon dioxide, CO and HDO/H₂O above the cloud top Measurements of H₂O and SO₂ in and above the clouds as well as particulate components To measure mesospheric wind field through direct Doppler measurements |